Header

UZH-Logo

Maintenance Infos

The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts


Klein, Kerstin; Kabala, Pawel A; Grabiec, Aleksander M; Gay, Renate E; Kolling, Christoph; Lin, Lih-Ling; Gay, Steffen; Tak, Paul P; Prinjha, Rab K; Ospelt, Caroline; Reedquist, Kris A (2016). The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Annals of the Rheumatic Diseases, 75(2):422-429.

Abstract

OBJECTIVE: To investigate the effects of BET bromodomain protein inhibition on inflammatory activation and functional properties of rheumatoid arthritis synovial fibroblasts (RASF).
METHODS: The expression of the BET bromodomain proteins BRD2, BRD3 and BRD4 was analysed in synovial tissue by immunohistochemistry. RASF were stimulated with tumour necrosis factor (TNF)-α, interleukin (IL)-1β and toll-like receptor (TLR) ligands (Pam3, pIC and lipopolysaccharide (LPS)) in the presence or absence of the BET inhibitor I-BET151, or siRNA targeting BRD2, BRD3 and BRD4. RASF expression of inflammatory mediators, including MMP1, MMP3, IL-6 and IL-8, was measured by q-PCR, q-PCR array and ELISA. Cellular viability, apoptosis, proliferation and chemoattractive properties of RASF were investigated using MTT, cell apoptosis ELISA, BrdU-based proliferation and transwell migration assays.
RESULTS: BRD2, BRD3 and BRD4 proteins were detected in rheumatoid arthritis (RA) synovial tissue, expressed in both RASF and macrophages. I-BET151 suppressed cytokine and TLR ligand-induced secretion of MMP1, MMP3, IL-6 and IL-8, and mRNA expression of more than 70% of genes induced by TNF-α and IL-1β. Combined silencing of BRD2, BRD3 and BRD4 significantly reduced cytokine and TLR ligand-induced expression of a subset of gene products targeted by I-BET151, including MMP1, CXCL10 and CXCL11. I-BET151 treatment of RASF reduced RASF proliferation, and the chemotactic potential for peripheral blood leucocytes of RASF conditioned medium.
CONCLUSIONS: Inhibition of BET family proteins suppresses the inflammatory, matrix-degrading, proliferative and chemoattractive properties of RASF and suggests a therapeutic potential in the targeting of epigenetic reader proteins in RA.

Abstract

OBJECTIVE: To investigate the effects of BET bromodomain protein inhibition on inflammatory activation and functional properties of rheumatoid arthritis synovial fibroblasts (RASF).
METHODS: The expression of the BET bromodomain proteins BRD2, BRD3 and BRD4 was analysed in synovial tissue by immunohistochemistry. RASF were stimulated with tumour necrosis factor (TNF)-α, interleukin (IL)-1β and toll-like receptor (TLR) ligands (Pam3, pIC and lipopolysaccharide (LPS)) in the presence or absence of the BET inhibitor I-BET151, or siRNA targeting BRD2, BRD3 and BRD4. RASF expression of inflammatory mediators, including MMP1, MMP3, IL-6 and IL-8, was measured by q-PCR, q-PCR array and ELISA. Cellular viability, apoptosis, proliferation and chemoattractive properties of RASF were investigated using MTT, cell apoptosis ELISA, BrdU-based proliferation and transwell migration assays.
RESULTS: BRD2, BRD3 and BRD4 proteins were detected in rheumatoid arthritis (RA) synovial tissue, expressed in both RASF and macrophages. I-BET151 suppressed cytokine and TLR ligand-induced secretion of MMP1, MMP3, IL-6 and IL-8, and mRNA expression of more than 70% of genes induced by TNF-α and IL-1β. Combined silencing of BRD2, BRD3 and BRD4 significantly reduced cytokine and TLR ligand-induced expression of a subset of gene products targeted by I-BET151, including MMP1, CXCL10 and CXCL11. I-BET151 treatment of RASF reduced RASF proliferation, and the chemotactic potential for peripheral blood leucocytes of RASF conditioned medium.
CONCLUSIONS: Inhibition of BET family proteins suppresses the inflammatory, matrix-degrading, proliferative and chemoattractive properties of RASF and suggests a therapeutic potential in the targeting of epigenetic reader proteins in RA.

Statistics

Citations

Dimensions.ai Metrics
113 citations in Web of Science®
116 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Immunology and Allergy
Health Sciences > Rheumatology
Life Sciences > Immunology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Language:English
Date:2016
Deposited On:11 Feb 2015 15:12
Last Modified:26 Jan 2022 05:00
Publisher:BMJ Publishing Group
ISSN:0003-4967
OA Status:Closed
Publisher DOI:https://doi.org/10.1136/annrheumdis-2014-205809
PubMed ID:25467295
Full text not available from this repository.