Abstract
A new, seemingly useful presentation of zeta functions on complex tori is derived by using contour integration. It is shown to agree with the one obtained by using the Chowla–Selberg series formula, for which an alternative proof is thereby given. In addition, a new proof of the functional determinant on the torus results, which does not use the Kronecker first limit formula nor the functional equation of the non-holomorphic Eisenstein series. As a bonus, several identities involving the Dedekind eta function are obtained as well.