Header

UZH-Logo

Maintenance Infos

Nepenthespitcher inspired anti-wetting silicone nanofilaments coatings: Preparation, unique anti-wetting and self-cleaning behaviors


Zhang, Junping; Wang, Aiqin; Seeger, Stefan (2014). Nepenthespitcher inspired anti-wetting silicone nanofilaments coatings: Preparation, unique anti-wetting and self-cleaning behaviors. Advanced Functional Materials, 24(8):1074-1080.

Abstract

Nepenthes pitcher inspired anti-wetting coatings, fluoro-SNs/Krytox, are successfully fabricated by the combination of fluoro-silicone nanofilaments (fluoro-SNs) and Krytox liquids, perfluoropolyethers. Fluoro-SNs with different microstructure are grown onto glass slides using trichloromethylsilane by simply repeating the coating step, and then modified with 1H, 1H, 2H, 2H - perfluorodecyltrichlorosilane. Subsequently, the Krytox liquid is spread on the fluoro-SNs coatings via capillary effect. The fluoro-SNs/Krytox coatings feature ultra-low sliding angle for various liquids, excellent stability, and transparency. The sliding speed of liquid drops on the fluoro-SNs/Krytox coating is obviously slower than on the lotus inspired superhydrophobic and superoleophobic coatings, and is controlled by composition of the coating (e.g., morphology of the fluoro-SNs, type of Krytox and its thickness) and properties of the liquid drops (e.g., density and surface tension). In addition, the self-cleaning property of the fluoro-SNs/Krytox coating is closely related to properties of liquid drops and dirt.

Abstract

Nepenthes pitcher inspired anti-wetting coatings, fluoro-SNs/Krytox, are successfully fabricated by the combination of fluoro-silicone nanofilaments (fluoro-SNs) and Krytox liquids, perfluoropolyethers. Fluoro-SNs with different microstructure are grown onto glass slides using trichloromethylsilane by simply repeating the coating step, and then modified with 1H, 1H, 2H, 2H - perfluorodecyltrichlorosilane. Subsequently, the Krytox liquid is spread on the fluoro-SNs coatings via capillary effect. The fluoro-SNs/Krytox coatings feature ultra-low sliding angle for various liquids, excellent stability, and transparency. The sliding speed of liquid drops on the fluoro-SNs/Krytox coating is obviously slower than on the lotus inspired superhydrophobic and superoleophobic coatings, and is controlled by composition of the coating (e.g., morphology of the fluoro-SNs, type of Krytox and its thickness) and properties of the liquid drops (e.g., density and surface tension). In addition, the self-cleaning property of the fluoro-SNs/Krytox coating is closely related to properties of liquid drops and dirt.

Statistics

Citations

Dimensions.ai Metrics
146 citations in Web of Science®
148 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > General Chemistry
Physical Sciences > General Materials Science
Physical Sciences > Condensed Matter Physics
Uncontrolled Keywords:Electrochemistry, Electronic, Optical and Magnetic Materials, Condensed Matter Physics, Biomaterials
Language:English
Date:2014
Deposited On:19 Feb 2015 13:41
Last Modified:26 Jan 2022 05:15
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1616-301X
Funders:“Hundred Talents Program of the Chinese Academy of Sciences”
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/adfm.201301481
Full text not available from this repository.