Header

UZH-Logo

Maintenance Infos

A Simplified Score to Quantify Comorbidity in COPD


Abstract

MPORTANCE: Comorbidities are common in COPD, but quantifying their burden is difficult. Currently there is a COPD-specific comorbidity index to predict mortality and another to predict general quality of life. We sought to develop and validate a COPD-specific comorbidity score that reflects comorbidity burden on patient-centered outcomes.
MATERIALS AND METHODS: Using the COPDGene study (GOLD II-IV COPD), we developed comorbidity scores to describe patient-centered outcomes employing three techniques: 1) simple count, 2) weighted score, and 3) weighted score based upon statistical selection procedure. We tested associations, area under the Curve (AUC) and calibration statistics to validate scores internally with outcomes of respiratory disease-specific quality of life (St. George's Respiratory Questionnaire, SGRQ), six minute walk distance (6MWD), modified Medical Research Council (mMRC) dyspnea score and exacerbation risk, ultimately choosing one score for external validation in SPIROMICS.
RESULTS: Associations between comorbidities and all outcomes were comparable across the three scores. All scores added predictive ability to models including age, gender, race, current smoking status, pack-years smoked and FEV1 (p<0.001 for all comparisons). Area under the curve (AUC) was similar between all three scores across outcomes: SGRQ (range 0·7624-0·7676), MMRC (0·7590-0·7644), 6MWD (0·7531-0·7560) and exacerbation risk (0·6831-0·6919). Because of similar performance, the comorbidity count was used for external validation. In the SPIROMICS cohort, the comorbidity count performed well to predict SGRQ (AUC 0·7891), MMRC (AUC 0·7611), 6MWD (AUC 0·7086), and exacerbation risk (AUC 0·7341).
CONCLUSIONS: Quantifying comorbidity provides a more thorough understanding of the risk for patient-centered outcomes in COPD. A comorbidity count performs well to quantify comorbidity in a diverse population with COPD.

Abstract

MPORTANCE: Comorbidities are common in COPD, but quantifying their burden is difficult. Currently there is a COPD-specific comorbidity index to predict mortality and another to predict general quality of life. We sought to develop and validate a COPD-specific comorbidity score that reflects comorbidity burden on patient-centered outcomes.
MATERIALS AND METHODS: Using the COPDGene study (GOLD II-IV COPD), we developed comorbidity scores to describe patient-centered outcomes employing three techniques: 1) simple count, 2) weighted score, and 3) weighted score based upon statistical selection procedure. We tested associations, area under the Curve (AUC) and calibration statistics to validate scores internally with outcomes of respiratory disease-specific quality of life (St. George's Respiratory Questionnaire, SGRQ), six minute walk distance (6MWD), modified Medical Research Council (mMRC) dyspnea score and exacerbation risk, ultimately choosing one score for external validation in SPIROMICS.
RESULTS: Associations between comorbidities and all outcomes were comparable across the three scores. All scores added predictive ability to models including age, gender, race, current smoking status, pack-years smoked and FEV1 (p<0.001 for all comparisons). Area under the curve (AUC) was similar between all three scores across outcomes: SGRQ (range 0·7624-0·7676), MMRC (0·7590-0·7644), 6MWD (0·7531-0·7560) and exacerbation risk (0·6831-0·6919). Because of similar performance, the comorbidity count was used for external validation. In the SPIROMICS cohort, the comorbidity count performed well to predict SGRQ (AUC 0·7891), MMRC (AUC 0·7611), 6MWD (AUC 0·7086), and exacerbation risk (AUC 0·7341).
CONCLUSIONS: Quantifying comorbidity provides a more thorough understanding of the risk for patient-centered outcomes in COPD. A comorbidity count performs well to quantify comorbidity in a diverse population with COPD.

Statistics

Citations

Dimensions.ai Metrics
50 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

88 downloads since deposited on 10 Feb 2015
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Health Sciences > Multidisciplinary
Language:English
Date:2014
Deposited On:10 Feb 2015 13:47
Last Modified:08 Jul 2022 13:01
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0114438
PubMed ID:25514500
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)