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Abstract

Quantum Chromodynamics (QCD) is nowadays accepted as the theory
describing strong interactions in terms of quark and gluon degrees of freedom.
A peculiar feature of the theory is asymptotic freedom, which implies that
the QCD coupling constant becomes small at high energy scales. Asymp-
totic freedom ultimately offers the possibility to compute observables for
hard-scattering processes as an expansion in the QCD coupling. When the
observable is sufficiently inclusive, these computations provide reliable pre-
dictions. On the contrary, when different energy scales are involved, the con-
vergence of the perturbative expansion is spoiled by the appearance of large
logarithmic terms, which are related to the infrared behaviour of the theory.
Methods exist to evaluate these logarithmically enhanced terms to higher
orders in perturbation theory, and, ultimately, to sum them to all orders.
The (re)summation of the large logarithmic terms extends the applicability
of the QCD perturbative approach to important observables measured at
high-energy colliders. Resummed calculations are thus essential for physics
studies within and beyond the Standard Model at the Large Hadron Collider
(LHC). This thesis deals with a class of processes which involves four partons
(quark or gluons) at the lowest perturbative order. Examples of such observ-
ables are the one-particle inclusive cross section at high transverse energies
and the transverse-momentum spectrum of heavy-quark pairs produced at
the LHC. The thesis investigates these two processes with an explicit compu-
tation of the logarithmically enhanced terms and presents their resummation
to all perturbative orders.
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Chapter 1

Introduction

The Standard Model (SM) of the elementary particles is nowadays accepted
as the theory of the electromagnetic, weak and strong interactions. The elec-
troweak sector is described by the Glashow-Weinberg-Salam SU(2) ⊗ U(1)
model [1–3], which extends Quantum Electrodynamics (QED) [4–7] to weak
interactions, and the strong sector is described by Quantum Chromodynam-
ics (QCD) [8–10]. The past fifty years have witnessed a continuous progress in
the theoretical understanding of the SM and in the development of analytical
and numerical tools which have paved the way to reliable quantitative predic-
tions. A wide class of observables is nowadays understood in the framework
of the SM, in the sense that their theoretical predictions agree with the cor-
responding measurements keeping into account theoretical and experimental
uncertainties [11]. The impressive collection of such measurements and pre-
dictions has led to a precise determination of all the parameters of the model
and the recent discovery [12,13] of a scalar resonance consistent with the long
sought Higgs boson [14,15] indeed crowns the SM as the successful theory of
elementary particle interactions.

The perturbative approach to Quantum Field Theory, i.e. the possibil-
ity to organise any calculation in terms of Feynman diagrams, has played a
key role in the success of the SM. Under the assumption of small coupling
constants, a first estimation of the probability amplitude for a given reaction
can be obtained by taking into account only the lowest order in the pertur-
bative expansion. This is the Leading-Order (LO) approximation, which in
most cases gives the order of magnitude of the cross section for the reaction,
once the squared amplitude is integrated over the available phase space of
the kinematical degrees of freedom. A more precise estimate can be achieved
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CHAPTER 1. INTRODUCTION 4

by including the Feynman diagrams contributing to higher powers of the
couplings with respect to the Born level. By following this approach any
calculation can be systematically organised order-by-order in perturbation
theory. Higher-order terms in the expansion should reduce the theoretical
errors and yield more reliable predictions. Higher-order has thus become a
synonym for higher precision and a big effort has been devoted to calculate
perturbative corrections to all the relevant observables, to the extent that
nowadays general methods exist to perform perturbative computations up
to the Next-to-Leading Order (NLO) in the QCD coupling αS. Analogous
computations are being performed up to NLO in the EW coupling α. For
some reactions even Next-to-Next-to-Leading Order (NNLO) predictions are
available (see e.g. the SM review articles in [11]).

The computation of higher-order Feynman diagrams involves the inclu-
sion of real and virtual corrections and is characterised by different kinds of
singularities. Ultraviolet (UV) singularities appear only in virtual diagrams
and are removed by renormalisation, i.e. by connecting all the divergent
bare parameters of the Lagrangian of the SM to a set of physical observ-
ables. Infrared (IR) soft and collinear divergencies, appearing in theories
with massless particles, like QED and QCD, cancel out when summing over
all the degenerate physical states. Degenerate states are those with the same
kinematical configuration, once soft and collinear particles are removed. In
the case of QED, the Bloch-Nordsieck theorem [16] states that IR divergen-
cies cancel out in transition probabilities for inclusive processes. Order by
order in perturbative QED, the sum of the virtual and real corrections is
IR finite. For a given scattering process, the IR singularities arising from
virtual corrections to the elastic process and due to divergent loop integrals
cancel against the IR singularities due to phase space integrals of the real
corrections to the inelastic process.

QCD features a more complicated pattern of singularities. The Bloch-
Nordsieck cancellation holds in the case of fully inclusive processes, with no
partons in the initial state and no registered partons in the final state. The
total cross section for e+e− annihilation belongs to this class of observables
and the QCD corrections can be derived by assuming that the sum over par-
tonic final states equals the corresponding hadronic sum. The situation gets
more involved for inclusive processes with registered partons. In this case, the
inclusive partonic cross-section is affected by left-over collinear singularities.
The Bloch-Nordsieck theorem is extended by the Kinoshita-Lee-Nauenberg
(KLN) theorem [17,18], which states that IR divergencies cancel when sum-
ming over all the degenerate initial and final states. Here a short digression
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on the parton model is in order.

Contrary to the QED case, the renormalisation group equation for QCD
predicts a weaker coupling at growing energies. The renormalised strong
coupling αS(µ

2) vanishes in the limit µ2 → ∞. At energies much higher
than the hadronic masses, quarks and gluons propagate as free degrees of
freedom and the partonic reactions are described by the renormalised QCD
Lagrangian. This behaviour, known as asymptotic freedom, justifies the per-
turbative treatment of QCD. At scales comparable to the hadronic masses,
the partons are confined in colour-singlet bound states, the hadrons. The
perturbative picture offered by QCD at hard scales must be complemented
by a non-perturbative description of the hadronic currents. The connection
between the perturbative and the non-perturbative regimes is realised by the
factorisation theorem. According to the factorisation theorem, any hadronic
cross section can be written as a convolution between a partonic cross section,
that describes the partonic reaction occurring at high energies, and structure
functions for the registered partons, that account for the hadronic physics
running from the low scales typical of bound states up to a factorisation scale
µF . In analogy to the renormalisation program to handle UV singularities,
the IR divergencies are absorbed into bare (divergent) structure functions.
The scale µF thus acts as a regulator of the partonic cross section, at the cost
of introducing scale-dependent structure functions. The factorisation theo-
rem of QCD further states that the structure functions can be expressed in
terms of universal distributions, the Parton Distribution Functions (PDFs)
of initial-state partons in the colliding hadrons and the fragmentation func-
tions of final-state partons to the observed hadrons. This is of crucial im-
portance in order to extract quantitative predictions for hadron scatterings
via perturbative calculations. The non-perturbative probability of extract-
ing an initial-state parton from a colliding hadron (or that of observing a
hadron from a final-state parton) can be extracted once and for all from an
appropriate set of experimental measurements.

The theory also predicts the scale dependence of the parton densities.
Since the hadronic cross section must be independent of the factorisation
scale, the dependence of the partonic cross section and the PDFs on this
scale must cancel out in their convolution. It follows that the scale evo-
lution of the parton densities and the fragmentation functions can be in-
ferred from perturbative QCD arguments, even if the functions themselves
are non-perturbative. This approach leads to the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations, a set of coupled differential
equations describing the scale evolution of the probability densities of quarks,
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antiquarks and gluons inside the hadrons [19–21]. Their solutions determine
the parton densities at any scale in terms of the measured non-perturbative
initial conditions.

The hadronic cross section is actually dependent on the factorisation
scale, as well as on the renormalisation scale, once the perturbative series
is truncated at a certain order in αS. By varying the factorisation scale
one can keep this dependence under control and assess the theoretical er-
ror. At the partonic level, the factorisation scale acts as a regulator of the
collinear divergency, at the price of introducing logarithms of µ2

F/Q
2 in the

partonic cross section, where Q2 is the energy scale of the hard process. For
this reason the two scales should have the same order of magnitude. Other-
wise large logarithms would enhance terms suppressed by the small coupling
αS(Q

2) ≪ 1 and the underlying perturbative hypothesis would not be valid
anymore. With an appropriate choice of the renormalisation and the fac-
torisation scales, even processes with identified hadrons in the initial or final
states are perturbatively computable, as long as one hard-momentum scale
is present.

Many interesting observables unfortunately fall out of this category and
the factorisation theorem is not enough to understand hard processes in terms
of perturbative partonic scatterings. In the case of semi-inclusive quantities,
when more than one hard scale is involved, logarithms of ratios of the hard
scales are present, originating from energy or momentum thresholds. In the
phase space regions where these scales are strongly ordered, the logarith-
mic terms are large and the validity of the perturbative approach should be
questioned: in such phase space regions the theoretical predictions deviate
significantly from the available experimental results.

The issue of large logarithmic terms spoiling the convergency of the per-
turbative series affects all the infrared sensitive quantities in theories with
massless particles, like QED and QCD. This issue essentially lies in the can-
cellation of real and virtual infrared divergencies. Soft or collinear real radi-
ation is undetected below the finite resolution of the experimental devices,
and the theoretical definition of any observable must then be inclusive on
such infrared contributions to have a physical sense. The singular structure
of real and virtual corrections has to be the same and opposite in sign, in
order to cancel all the divergent terms. However, the kinematics of real radi-
ation differs from that of virtual radiation and this leads to an imbalance in
the resulting infrared-safe distribution, at exclusive boundaries of the phase
space. The resolution-cuts indeed introduce a logarithmic dependence in the
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coefficients of the perturbative expansion, in terms of extra scales that differ
from the hard scale of the inclusive partonic process. This dependence is in-
tegrated out only when considering fully-inclusive quantities, but it is critical
in semi-inclusive distributions. At specific phase-space boundaries where the
real radiation is strongly suppressed (or strongly enhanced) the logarithmic
terms are large and dominate the perturbative expansion. These are known
as Sudakov effects [22]. If x is the kinematical variable that measures the
distance from the exclusive boundaries, then x → 0 denotes the Sudakov
region. In the perturbative series there are tipically up to two powers of
L = ln(x) for each power of αS, one of soft and one of collinear origin. The
leading term in the near-threshold region at the first perturbative order is
then proportional to αSL

2, the next-to-leading term is proportional to αSL.
At all orders in αS, the perturbative coefficients involve terms of the type
αn
SL

m(m ≤ 2n), which are not suppressed as ordered powers of αS.

The solution to the problem was originally proposed in QED [23] for
the energy distribution of infrared radiation in e+e− collisions. When the
radiated energy ω is small in comparison to the transferred energy E, the
behaviour of the distribution is governed by the exponential (ω/E)α. The
large logarithmic terms are shown to be universal and proportional to the
lowest order (Born-level) cross section and they are ‘resummed’ in the expo-
nent, to all-order in the QED coupling α.

The same approach has been successfully extended to QCD, leading to
an important progress in the phenomenology of high-energy hadron-hadron
collisions. A typical process sensitive to soft-gluon effects is the hadropro-
duction of a colourless system of large mass Q (a W or Z boson, an excited
γ, a muon pair) at measured transverse momentum qT. The gluons radiated
from the annihilating partons carry away transverse momentum and at low Q
the observed qT-distribution reflects the transverse momentum distribution
of the incoming partons. As Q is made larger, the gluon radiation increases
and the qT-distribution broadens. With the advent of QCD factorisation the-
orem, it was possible to compute the transverse momentum distribution in
the Drell-Yan (DY) process up to the NLO corrections in αS [24]. The result,
obtained through a plain perturbative approach, is only useful at qT ∼ Q,
because of the presence of logarithms LT = ln(Q2/q2T) in the perturbative
coefficients. As qT → 0 the fixed order cross section is indeed divergent.
The low transverse-momentum region qT ≪ Q is a Sudakov region for this
observable, where soft radiation is suppressed and the logarithms become
large. In [25–27] it was shown that the leading terms αn

SL
2n−1
T /q2T came from

dressed qT-ordered ladder diagrams in a physical gauge (see Section 2.1),
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where each subsequent emission is soft or collinear (hence qT is low). Thus,
they could be calculated and exponentiated to all-order in αS. The formula
proposed by Collins, Soper and Sterman (CSS) in [28], with PDFs evaluated
at the soft scale 1/b (see Chapter 5) paved the way to the systematic analy-
sis of Sudakov effects at low measured transverse momentum in QCD. The
modern transverse-momentum resummation formalism [29] is an extension
of the CSS formula to the rich phenomenology of final states produced at
hadron colliders.

Another class of soft-gluon sensitive observables is represented by inclu-
sive hard-scattering cross sections in kinematical configurations that are close
to the partonic threshold. Typical examples are the Deep Inelastic Scattering
(DIS) cross section and DY-like cross sections for the production of lepton
pairs and Higgs or massive vector bosons. The first attempts to calculate
large logarithmic terms to all orders in semi-inclusive limits can be found
in [30–32]. The complete resummed formulae with next-to-leading logarith-
mic accuracy for the Drell-Yan and DIS cross sections first appeared in [33],
followed shortly after by the independent result of [34–36]. The same tech-
niques were then applied to develop the coherent branching algorithms for
NLL Monte Carlo [37] and the resummation of distributions characterising
the structure of the hadronic final states (see e.g. Ref. [38] and references
therein).

The many calculations available in the literature demonstrate how impor-
tant the concept of resummation is to the phenomenology of Hadron Physics.
Resummation-improved predictions successfully account for the experimental
results in the critical boundaries, where simple fixed-order results fail badly.
When only two QCD partons take part to the Born-level scattering, the
contribution due to large-angle soft-gluon exchange between the annihilating
partons cancels out at the level of squared amplitudes: the large logarithmic
terms to be resummed correspond to phase-space regions of (soft and hard)
collinear emission and are free of colour correlations. The resulting colour
flow is equivalent to that of independent self-interactions of the hard partons
via the emission and reabsorption of real and virtual soft gluons. This is the
case of the hadroproduction of Higgs bosons, massive vector bosons and in
general of colourless composite systems produced in DY-like processes. When
QCD partons are produced at the Born level, instead of a colourless system,
the same logarithmic structure typical of DY-like emission is to be found in
the amplitude, along with additional terms due to soft-collinear QCD radia-
tion from the final-state hard partons. The squared amplitude now receives
contributions from soft-gluon exchanges between all the hard partons, and
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the colour flow is more involved: due to the non-abelian properties of the
QCD interactions, the matrix elements do not respect a simple scalar fac-
torisation anymore, and the kinematical factorisation can be preserved only
by introducing colour operators and colour amplitudes on an abstract colour
space (see Section 2.5). The collinear functions that resum DY-like loga-
rithms are diagonal in colour space, while the additional logarithmic terms
are proportional to colour operators projected on the colour states of the LO
kinematics. The extension of the known resummation formulae to include
these non-collinear effects and the ensuing colour correlations is not trivial
and requires new exponential functions defined in colour space. The general
soft-gluon resummation formalism for inclusive cross sections in these com-
plex multiparton processes was developed in a series of papers [39–44]. In re-
cent years, techniques and methods of Soft Collinear Effective Theory [45–47]
(SCET) have also been developed and applied to resummation for inclusive
cross sections near (partonic) threshold [48–54] and to transverse-momentum
resummation [55–63].

This thesis is devoted to the study of two different processes initiated by
the hard scattering of four QCD partons: the one-particle inclusive produc-
tion at large transverse momentum in hadronic collisions and the production
of a heavy quark pair at small transverse momentum. By using the uni-
versality of soft and collinear emissions, we compute the structure of the
logarithmically enhanced contribution at relative order O(αS) for these two
processes, up to the subleading (constant) terms. Our results are factorised
in colour space and this allows us to explicitly disentangle colour-interference
effects. Inspired by the BCMN approach [44], we then derive all-order re-
summation formulae, valid at arbitrary logarithmic accuracy and written in
terms of collinear radiative factors and of colour-space radiative factors. The
former are already known: being associated to individual radiators, they are
process-independent and they can be extracted from the resummed results
for the hadroproduction of colourless final states with high invariant mass
and small transverse momentum. The latter exponentiate ‘soft anomalous
dimensions’ that take into account soft-gluon radiation at large angles, with
the ensuing colour correlations. Thanks to our process-independent NLO
results we explicitly determine all the resummation coefficients up to NLL
accuracy, including the soft anomalous dimensions in colour space. Further-
more, from the colour structure of the constant terms at relative order O(αS),
we are able to extract the explicit form of (IR finite) one-loop hard-virtual
amplitudes at the same perturbative order. From this ingredient we can
determine an entire class of resummed contribution at NNLL accuracy, as
discussed in Chapters 4 and 6.
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The rest of the thesis is organised as follows. In Chapter 2 we discuss the
separation of the perturbative and non-perturbative regimes in QCD and the
factorisation of mass singularities. We discuss the DGLAP evolution equa-
tions and show how the large logarithmic terms arise in soft and collinear lim-
its. The all-order exponentiation of the leading logarithmic terms is treated
in general terms, by using the factorisation properties of soft and collinear
radiation. We also introduce the abstract colour space where the factorisa-
tion of the singular terms can be formulated in a process-independent way.
Explicit resummation formulae are presented in Chapter 3. The analysis of
the Drell-Yan process and of the deep inelastic scattering in the partonic-
threshold limit leads to the definition of process-independent semi-inclusive
form-factors. These factors capture the effect of collinear radiation and re-
sums the large logarithmic terms to all orders in perturbation theory. The
same formalism can be applied to any process in the kinematical region of
partonic threshold, when up to three QCD partons are involved, since the
effect of non-collinear radiation is suppressed and the colour algebra obeys
a scalar factorisation. In Chapter 4 we consider the cross section for the
one-particle inclusive production and we calculate the NLO corrections in
the threshold limit in which the final-state system that recoils against the
triggered parton is constrained to have a small invariant mass. We then
present our all-order resummation formula, which explicitly resums all NLL
terms and is organised in a way that makes the extension to the NNLL accu-
racy simple. The tranverse-momentum resummation formalism of Ref. [29]
is presented in Chapter 5 and applied to the cross section for the production
of a colourless system of high total invariant mass, in the kinematical re-
gion where the transverse-momentum of the final-state system vanishes. The
large logarithms of collinear origin are resummed by universal Sudakov form-
factors, while any contribution due to large-angle emission is suppressed in
the low-qT region. The colliding initial-state partons are the only QCD par-
ticles involved in the scattering and the colour flow is described by scalars.
In Chapter 6 we present the resummed transverse-momentum distribution
for the production of a heavy-quark pair. The cross section is calculated in
the low-qT limit, up to NLO, and the fixed order result is compared with
that of the previous Chapter. By using the same techniques as in Chap-
ter 4, we propose our extension of the resummation formalism to include
colour-correlation terms due to large-angle soft-gluon emissions. We explic-
itly calculate all the resummation coefficients at NLL accuracy and we discuss
the extension to NNLL accuracy, including the issue of spin and azimuthal
correlations for the gluon fusion channel [64].



Chapter 2

Factorisation and soft gluon
effects

The description of QCD radiation in soft and collinear regimes and the all-
order calculation of the ensuing large logarithmic contributions is made pos-
sible by the universal factorisation properties of infrared radiation. Here
we review the techniques that lead to the process-independent description
of collinear splittings and soft-gluon emission. The resummed formulae are
essentially build upon the same approximations.

The description of collinear radiation can be derived from the pertur-
bative behaviour of the parton distribution functions, as dictated by the
DGLAP evolution equations. Soft-gluon effects can be better understood as
a generalisation of simpler (abelian) soft-photon emission. The derivation of
the DGLAP equations and a review of QED resummation is hence in order.

2.1 DGLAP equations

The parton model is first introduced within the simple kinematics of (unpo-
larised) lepton-hadron deep inelastic scattering (DIS) and bare parton den-
sities f(x) are defined in the Bjorken limit of infinite momentum transfer.
The Born-level process is free of strong interactions. It is therefore the ideal
framework to focus on the hadron undergoing scattering and to introduce
higher-order QCD effects.

11
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k k′

P

Q

}
X

Figure 2.1: Deep Inelastic Scattering.

The hadronic reaction is a scattering process between a lepton l, with
initial-state momentum k and final-state momentum k′, and a hadron h of
momentum P , undergoing fragmentation into a hadronic final-state X ,

l(k) + h(P ) → l(k′) +X . (2.1)

The squared centre-of-mass energy is S = (k + P )2 and the (space-like)
transferred momentum is Q = k′−k. We define Q2 such that Q2 = −QµQ

µ >
0. The inelastic regime is characterised by an invariant mass squared of the
hadronic final state, W 2 = (P + q)2, much bigger than the mass squared
P 2 = M2

h of the incoming hadron. It follows that

W 2 = M2
h + 2P ·Q−Q2 > M2

h ⇒ x =
Q2

2P ·Q < 1 . (2.2)

The dimensionless variable x is the Bjorken variable, of real values in the
range (0, 1). The limit x → 1 corresponds to the elastic regime W 2 =
M2

h . Due to Lorentz invariance and gauge invariance the leading-order cross
section for the exchange of a virtual photon at fixed Q2, x can be written as

dσ

dQ2dx
=

2πα2

xQ2

{[
1 + (1− y)2

]
F2(x,Q

2)− y2FL(x,Q
2)
}
, (2.3)

where α is the electroweak coupling and y is the energy fraction transferred
by the scattered lepton, as measured in rest frame of the hadron,

y =
Q2

xS
=

2P ·Q
S

. (2.4)
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k k′

P

Q

xP

Figure 2.2: The Deep Inelastic scattering as a partonic reaction.

The dimensionless proton structure functions F2, FL of the incoming hadron
parametrise the non-perturbative information associated to the strong scat-
tering dynamics.

We are interested in a deep scattering, with momentum transfer Q2 much
higher that the hadron mass M2

h and in the limit where the Bjorken variable
x is constant. In such a limit the strong coupling αS(Q

2) is small enough to
proceed with the perturbative approach. According to asymptotic freedom,
the partons inside the hadron are essentially free. In addition, if the parton
density in the hadron is not too large, the virtual photon which mediates
the scattering will be able to interact with only a single constituent of the
hadron. In the DIS regime this assumption is reasonable. The higher is the
momentum transfer Q, the shorter is the time in which the interaction takes
place. In the parton model, the inelastic electron-hadron scattering is an
elastic electron-quark scattering, at the Born level (Figure 2.2). The inter-
actions of the partons among themselves, occurring before or after the hard
scattering, cannot interfere with it. The two processes are thus incoherent
and the total cross section for DIS is computed by combining probabilities,
rather than amplitudes. The probability associated to the electron-quark
scattering is its (perturbative) cross-section. The probability that the pho-
ton encounters a free parton of flavour a and momentum p = xP is the (bare)
parton density fa/H(x). The structure functions are equal to the convolution
between parton densities and parton coefficient functions,

Fi(x,Q
2) ∼

∑

a=q,q̄

∫ 1

x

dz fa/h(z)Fi,a(x/z,Q
2) . (2.5)
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The argument x/z of the parton coefficient function in the right-hand-side
of Eq. (2.5) reflects the momentum fraction of the parton with respect to
the parent hadron, fixed by the argument z of the parton density. The
coefficient functions Fi,a are defined from the partonic cross section, by the
same relation (2.3) that connects the proton structure function Fi and the
hadronic cross section. The hadron structure is entirely parametrised by the
parton densities and the residual information is that of an elastic scattering
between elementary (point-like) QCD states. The explicit computation of
the matrix element for γ∗q → γ∗q scattering with an on-shell massless quark
leads to

F2(x,Q
2) ∼ F2(x) = x

∑

a=q,q̄

e2a fa/h(x) , FL(x,Q
2) ∼ 0 . (2.6)

According to the parton model, the structure functions are independent of Q2

in the large Q2 limit, since the parton densities are independent of the hard

scale Q2. This behaviour, known as Bjorken scaling, is due to the point-like
nature of the hadron constituents and it is confirmed by the experimental
results. Moreover the parton model predicts the Callan-Gross relation, i.e.
a vanishing longitudinal structure function FL in the large Q2 limit for on-
shell, massless, spin 1/2 partons. The interaction of such particles with the
longitudinal degrees of freedom of virtual photons would violate the helicity
conservation. These results confirm the validity of the (leading-order) par-
ton model and of measurable parton densities. Higher order QCD corrections
violate both the Bjorken scaling and the Callan-Gross relation. The factori-
sation picture is still valid, as long as the parton densities are promoted to
scale-dependent functions.

A better approximation of the structure functions can be derived from
Eq. (2.5) by employing NLO matrix elements for the partonic scattering.
The O(αS) corrections to the squared amplitude include the sum squared of
one-loop virtual contributions as well as the sum squared of the real emis-
sion diagrams, where one final-state gluon is radiated from the initial- and
the final-state quark. The sum of the virtual and the real contributions (Fig-
ure 2.3), the latter integrated over the gluon phase-space, leads to the cancel-
lation of soft and final-state collinear singularities. In agreement to the KLN
theorem, an initial-state collinear pole survives, due to the exclusive nature
of the partonic cross section with respect to the specific initial-state parton
taking part to the scattering. At the hadronic level, the parton densities
imply a sum over all the possible initial-states and the residual collinear sin-
gularities must cancel. In order to cure the UV divergencies, the parameter
of the Lagrangian are considered divergent. The renormalisation program
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Q

xP

QQ

QQ

xPxP

xPxP

Figure 2.3: Feynman diagrams of the virtual (first row) and real (second
row) NLO QCD corrections to the γ∗q scattering.

consists in consistently reabsorbing the UV poles into the ‘bare’ parameters
and to connect the ‘dressed’ parameters to physical observables, order-by-
order in perturbation theory. In a similar fashion, the parton densities of the
naive parton model can be dressed with the long-range effects due to collinear
splittings from the hadronic scale M2

h ∼ 0 up to a perturbative scale µ2
F . The

higher-order collinear poles are then reabsorbed into the higher-order correc-
tions to the parton densities. The factorisation scale µF separates long- and
short-range (soft- and hard-scale) effects, acting as a regulator of the partonic
cross section.

In the region of interest, the emission of a gluon of momentum q from the
initial-state parton can be described via a collinear approximation, where the
transverse-momentum squared q2T of the gluon (transverse with the respect
to the longitudinal direction p) is small with respect to the hard scale Q2.
Under this approximation and in a physical gauge in which the gluon admits
only transverse polarisations, the interference term of initial- and final-state
radiation is convergent. The only collinear-divergent contribution is due to
the square of the initial-state radiation matrix element. The dominant term
(in the region q2T ≪ Q2) is proportional to the Born-level amplitude squared
|MDIS|2,

αS

2π

dz

z
P (1)
q (z)

dq2T
q2T

(
1 +O(|qT|)

)
|MDIS(p, q)|2 . (2.7)
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The probability of emission of a single gluon from a quark (antiquark) is de-
scribed by the LO regularised diagonal Altarelli-Parisi (AP) splitting proba-

bility P
(1)
q (z), where z is the energy fraction left to the quark after splitting.

‘Regularised’ refers to the inclusion of the divergent contact term at z = 1,
from the self-energy diagram of the quark. This virtual contribution is re-
quired in order to define a regular distribution over the available energy
phase-space. ‘Diagonal’ refers to flavour conservation during the splitting.
The same factorisation property is valid for a triple-gluon vertex and for
non-diagonal splittings as well. The same arguments can be straightfor-
wardly extended to any initial-state parton evolving to the required flavour
after splitting (a quark or antiquark in the case of DIS off a vector boson).
The AP probability describing the evolution of a ‘parent’ parton b into a
‘child’ parton a carrying a longitudinal momentum fraction z is denoted by
Pab(z, αS). These functions are universal, they only depend on the QCD
interactions between gluons, quarks and antiquarks. They admit a pertur-
bative expansion in αS,

Pab(z, αS) =
αS

2π
P

(1)
ab (z) +

∞∑

n=2

(αS

2π

)n
P

(n)
ab (z) . (2.8)

The coefficient P
(1)
ab describes the energy spectrum of the splitting due to

the emission of a single parton and the coefficients P
(n)
ab include higher-order

effects due to multiple QCD radiation. The explicit calculation of the LO
coefficients [21] of the regularised probabilities gives

P (1)
qq (z) = CF

[
1 + z2

1− z

]

+

, (2.9)

P (1)
qg (z) = TR

[
z2 + (1− z)2

]
, (2.10)

P (1)
gq (z) = CF

[
1 + (1− z)2

z

]
, (2.11)

P (1)
gg (z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+ δ(1− z)β0 , (2.12)

where CF = (N2
c − 1)/(2Nc), CA = Nc, TR = 1/2 are the SU(Nc) colour

factors. The corresponding Feynman diagrams are listed in Figure 2.4 and the
results are identical in case of an antiquark. The coefficient β0 = 11/6CA −
1/3nf , where nf is the number of massless quarks, is the first coefficient of
the QCD β-function. The ‘plus-distribution’ of a function f(z) is defined at
the integral level as

∫ 1

0

dz [f(z)]+ g(z) =

∫ 1

0

dz [f(z)− f(1)] g(z) , (2.13)
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+
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+
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(1)
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1− z

q

g
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Figure 2.4: Born-level diagrams contributing to the regularised splitting func-
tions.

where g(z) is a test function, regular at z = 1. In Eq. (2.9) and in Eq. (2.12)
the f(z) functions of Eq. (2.13) are proportional to 1/(1−z), logarithmically
divergent at z = 1, while in the regularised distribution the pole at z = 1 is
cancelled via the subtraction of the contact term f(1). This term accounts
for the virtual emission, proportional to a δ(1−z) distribution. The real part
of the AP probabilities, corresponding to the real diagrams of Fig. 2.4, would
directly contain the divergent functions and not their regularised versions.
The divergent energy spectrum dz/(1−z) is the typical bremsstrahlung spec-
trum for the emission of a massless gauge boson (gluon in QCD or photon
in QED). In this case, the pole at z = 1 is associated to the emission of a
soft gluon with energy 1 − z → 0. The difference [f(z) − f(1)] that cancels
the divergence is due to a compensation between the real and the virtual
emission. The δ(1− z) and the plus-distributions in the quark-quark and in
the gluon-gluon splitting probabilities are due to the inclusion of the quark
and gluon self-energy diagrams, respectively.
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The integral of (2.7) over the available transverse-momentum phase-space
features a pole at q2T = 0, which can be regularised e.g. by employing di-
mensional regularisation with a number of dimensions d = 4 − 2ǫ → 4+.
Explicitly, up to a scale µ2,

µ2ǫ
R

∫ µ2

0

dq2T (q2T)
−1−2ǫ = −1

ǫ

(
µ2
R

µ2

)ǫ

, (2.14)

where µ2
R is the renormalisation scale. This is the collinear pole to be re-

absorbed into the bare parton density. The parton density regularised at a
scale µ2

F is defined, at the first order in αS and up to finite terms, as

fa/h(x, µ
2
F ) = fa/h(x)−

αS(µ
2
F )

2π

1

ǫ

(
µ2
R

µ2
F

)ǫ∑

b

∫ 1

x

dz

z
P

(1)
ab (z) fb/h(x/z)+O(α2

S).

(2.15)
The specification of the finite terms varies with the factorisation scheme
employed. Together with the 1/ǫ pole, the parton density in Eq. (2.15) in-
cludes any single-gluon emission with transverse-momentum spectrum (2.14),
within the scale µ2 = µ2

F . This is the quantity of interest, whereas fa/h(x)
does not have any physical meaning. The observable to be directly measured
at the colliders is the hadron structure function F2. Its expression beyond
the LO in αS is

F2(x,Q
2) =

∑

a=q,q̄

∑

b=q,q̄,g

∫ 1

x

dz fb/h(z, µ
2
F ) F2,ab

(
αS(µ

2
R); x/z,Q

2;µ2
F

)
. (2.16)

Eq. (2.16) extends the validity of Eq. (2.5) to higher-order corrections, by
making use of the improved parton densities. The parton b, which takes
part to the perturbative process with an initial momentum zP , can now be a
quark, an antiquark or a gluon. The underlying assumption is that Eq. (2.16),
proven at the first non-trivial order, can be extended to all orders. If this
holds, all the ǫ poles of collinear origin can be reabsorbed into the bare parton
density, along the lines of Eq. (2.15).

The meaning of Eq. (2.16) is that perturbative QCD itself can not predict
a hadronic observable like F2, but only its normalisation with respect to the
structure functions measured in other scattering processes. The perturbative
information lies in F2,ab. The infrared behaviour at the NLO is described by
the single splitting (2.7), with a general (non-diagonal) AP probability Pab.
The transverse-momentum spectrum of (2.14) from µ2

F to µ2 ∼ Q2 is part of
the perturbative partonic cross section and gives the logarithmic term

∫ Q2

µ2

F

dq2T
q2T

= ln
Q2

µ2
F

, (2.17)
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Figure 2.5: Pictorial representation of the DGLAP evolution equations.

which enters the expression of the coefficient function F2,ab:

F2,ab(αS; z, Q
2;µ2

F ) = z e2a

[
δabδ(1− z) + Pab(αS; z) ln

Q2

µ2
F

+Rab(αS; z, Q
2)

]
,

(2.18)

Rab

(
αS; z, Q

2
)
=

αS

2π
R

(1)
ab (z, Q

2) +

∞∑

n=2

(αS

2π

)n
R

(n)
ab (z, Q

2) . (2.19)

The lowest-order term in the r.h.s. of Eq. (2.18) is consistent with Eq. (2.6):
the parton b that enters the perturbative QED reaction has the same flavour a
and momentum fraction z as provided by the parton density. At higher-orders
in αS, the parton b can also be a gluon and in general it carries a momentum
xP , with x < z. The QCD corrections are described by the AP probability of
Eq. (2.8) and the perturbative function of Eq. (2.19), both starting at order
O(αS). The function Rab is the sum of the non-logarithmic contributions
from the real emission diagrams, due to the O(|qT|) term in Eq. (2.7), and
the multi-loop virtual corrections not included in Pab, proportional to δ(1−z).

The parton coefficient function F2,ab and hence the structure function
F2 now depend on the physical scale Q2, with the consequent violation of
the Bjorken scaling, in agreement with the experimental results. On the
contrary, the scale µ2

F appears only in the right-hand-side of Eq. (2.16). The
cross section for the hadronic scattering is independent of such arbitrary
unphysical scale and so must be the structure function. It follows that any
variation of the parton density fb/h due to a variation of the scale must be
compensated by the opposite behaviour of the function F2,ab. This behaviour
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is described by Eq. (2.18). From scale invariance of F2, dF2/dµ
2
F = 0, it is

thus possible to control the scale evolution of the parton densities, in close
similarity to the Renormalisation Group Equation (RGE) approach to the
µ2
R scaling. By differentiating the r.h.s. of Eq. (2.16) with respect to ln(µ2

F )
and by taking the first order in αS, one gets the DGLAP evolution equations,

µ2 d

dµ2
fa/h(x, µ

2) =
∑

b=q,q̄,g

∫ 1

x

dz

z
Pab(x/z, αS(µ

2)) fb/h(z, µ
2) . (2.20)

Even if the parton densities are associated to a non-perturbative process, an
infinitesimal scale variation is described by a perturbative differential equa-
tion involving the AP splitting probabilities. Eq. (2.20) expresses an iterative
picture, where the probability of finding a parton a of longitudinal momen-
tum fraction x and transverse momentum µ2 is equal to the probability of
finding a parton b of longitudinal momentum z and the same transverse mo-
mentum, convoluted with the probability for the QCD splitting process from
b to a, where the fraction x/z of longitudinal momentum is conserved.

The solution of the AP equations for a finite scale variation from µ2 = Q2
0

to µ2 = Q2 leads to the exponentiation of logarithms of the ratio Q2/Q2
0.

The explicit result can be easily derived for the non-singlet (NS) flavour
configuration. Due to a potential flavour change occurring in the splittings,
Eq. (2.20) defines a set of coupled differential equations, each of them fea-
turing a convolution integral. The equation for the NS distribution,

fNS
h =

nf∑

i=1

(fqi/h − fq̄i/h) , (2.21)

is instead decoupled and hence admits a simpler solution. In addition, a
convolution of real functions is a simple product in Mellin space. The Mellin
moment fN of a function f(z) is defined as

fN =

∫ 1

0

dz zN−1 f(z) , (2.22)

and the convolution integral of two functions is transformed to

∫ 1

0

dz zN−1

∫ 1

0

dt f(t) g(z/t) Θ(z − t) =

∫ 1

0

dt tN−1f(t)

∫ 1

0

d(z/t) (z/t)N−1g(z/t) = fN gN . (2.23)
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The AP evolution equation for the NS-distribution fNS
N in Mellin space reads

µ2 d

dµ2
fNS
h,N(µ

2) = γNS
N (αS(µ

2)) fNS
h,N(µ

2) , (2.24)

where γNS
N is the non-singlet Altarelli-Parisi probability density function in

Mellin space. The Mellin transform of a splitting function is usually denoted
as

γab,N(αS) =

∫ 1

0

dz zN−1 Pab(αS; z) , (2.25)

and admits a perturbative expansion, whose coefficients are the Mellin trans-
forms of the P

(n)
ab (z) coefficients. At the lowest order the NS distribution

receives contributions from the quark-quark splitting only,

γNS
N (αS) =

αS

2π
γ
(1)
qq,N +O(α2

S) . (2.26)

The integration of Eq. (2.24) is straightforward and yields to

fNS
h,N(Q

2) = fNS
h,N(Q

2
0) exp

{∫ Q2

Q2

0

dq2

q2
γNS
N (αS(q

2))

}
. (2.27)

The initial condition fNS
N (Q2

0) contains the information on the partonic in-
teractions occurring from a non-perturbative scale M2

h to the scale Q2
0. The

exponential in the r.h.s. of Eq. (2.27) describes the subsequent evolution up
to the scale Q2. By ignoring the coupling evolution, i.e. αS(q

2) ∼ αS(Q
2),

and by making use of the expansion (2.26), the evolution of the non-singlet
parton density is approximately described by

fNS
h,N(Q

2) ∼ fNS
h,N(Q

2
0) exp

{
αS(Q

2)

2π
ln

Q2

Q2
0

γ
(1)
qq,N

}
. (2.28)

Moreover γ
(0)
qq,N ∼ −2CF ln(N) in the large-N limit, corresponding to the

soft-emission region z → 1 of the longitudinal-momentum space, so that

fNS
h,N(Q

2)
[

N→ ∞]∼fNS
h,N(Q

2
0) exp

{
−CF

αS(Q
2)

π
ln

Q2

Q2
0

lnN

}
. (2.29)

The logarithm ln(Q2/Q2
0) in the r.h.s. of Eq. (2.29) is potentially large and

the argument of the exponential could be of order 1, even if αS(Q
2) ≪ 1 at

the hard scale Q2. The exponential itself can not be expanded and truncated
to fixed-order without compromising the convergence of the perturbative
series. Eq. (2.29) thus correctly resums the leading logarithmic terms to
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all orders in αS and the leading logarithmic behaviour is controlled by the
lowest-order term in the argument of the exponential. Eq. (2.27) formally
resums all the logarithmic terms which are potentially large. Subleading
ln(Q2/Q2

0) terms can be recovered by implementing the scale variation of the
running coupling αS(q

2). Subleading ln(N) terms, if needed, are connected
to higher-order terms in the expansion of the γNS

N .

The physical content of Eq. (2.27) can be better appreciated in the direct
space of the longitudinal momentum fraction. The AP evolution equation
(2.20), valid for an infinitesimal scaling dµ2, follows from the simple splitting
probability (2.7), as derived in the collinear hypothesis of small transverse
momentum of the radiated gluon, q2T ≪ Q2. As a first approximation, the
evolution from a very soft scale Q2

0 to the hard scale Q can be described by
a single-splitting event, resulting in the (large) logarithmic contribution

αS ln
Q2

Q2
0

. (2.30)

At higher order in αS, the same approximation can be effectively employed to
parametrise multiple splitting, in the hypothesis of strongly q2T-ordered emis-
sions. The idea is simply to generate ‘ladder diagrams’ of iterated collinear
splittings, where the phase space available to the parton for emission i+1 is
further constrained with respect to the previous emission i. This is the same
iterative picture implied by Eq. (2.20). These diagrams do not depend on
the details of the specific hard process and they have the same behaviour in
all the processes, which is the reason why the parton distribution functions
are universal. The leading qT contribution of order αn

S, in a physical gauge
and in the region Q2

0 ≪ k2
1⊥ ≪ k2

2⊥ ≪ . . . ≪ k2
n⊥ ≪ Q2, is proportional to

αn
S

∫ Q2

Q2

0

dk2
1⊥

k2
1⊥

∫ Q2

k2
1⊥

dk2
2⊥

k2
2⊥

. . .

∫ k2
n−1⊥

Q2

0

dk2
n⊥

k2
n⊥

∼ 1

n!

(
αS ln

Q2

Q2
0

)n

. (2.31)

The sum over n, i.e. over all the multiple-emission diagrams, naturally leads
to the exponential function of argument (2.30). At subleading logarithmic
orders the interference corrections to the ladder diagrams must be taken into
account, but not the interference terms with the specific subprocess.

2.2 Dynamical and kinematical factorisation

We now want to discuss the conditions under which the logarithmically en-
hanced terms affecting fixed-order perturbative calculations near the bound-
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ary of the phase space admit an all-order resummation. In order to resum
the large logarithmic terms to all orders in αS we need to factorise and
exponentiate them (cfr. Eqs. (2.61), (2.83) and see Chapter 3). The feasi-
bility of exponentiation is subject to the dynamical and kinematical factori-
sation properties of the perturbative cross sections, but not every infrared
and collinear safe observable can be factorised. Here we restrict ourselves to
soft-gluon sensitive observables that admit a fully factorisable cross section
in the Sudakov limit. As regards dynamical factorisation, it follows from the
universal factorisation properties of QCD matrix elements in the soft and
collinear regions [65]. In the limit in which a gluon becomes soft (see Section
2.5) the QCD matrix elements factorise into the Born-level matrix elements
and a factor that takes into account the colour flow due to the soft-gluon
emission. In the limit in which two partons become collinear, the collinear
pair can be replaced by a single hard parton and the QCD matrix elements
factorise into the Born-level matrix elements and the Altarelli-Parisi splitting
functions. It follows that the leading higher-order real corrections are pro-
portional to the LO amplitude and, therefore, it is possible to factorise the
contributions from real QCD emission with respect to the process-dependent
virtual amplitude.

The complete factorisation of the cross section requires kinematics to
factorise as well. An essential property is phase-space factorisation, which
ensures that the integrated matrix element squared, i.e. the cross section, is
factorisable. In the Sudakov limit x → 0, the phase-space Φ is factorisable if
it can be approximated to [44]

dΦ({pi}; q) ∼ dΦ({pi})
d4q

(2π)3
δ+(q

2) u({pi}; q) , (2.32)

where dΦ({pi}) is the Born-level phase space and q is the momentum of an
additional final-state parton that is soft or collinear to the momenta {pi}.
The Sudakov weight u({pi}; q) depends on the observable, with its LO kine-
matics, and on the momentum q. In case of multiple radiation of partons
with momenta qi, the phase space is factorisable if all the Sudakov weights
are uncorrelated. The factorisation formula follows from the iteration of
Eq. (2.32) and each Sudakov weight depends on a single infrared momentum
qi. This iterative structure is typically not valid in the kinematical space
where the cross sections are defined, but in some conjugate space. Depend-
ing on the specific observable under consideration, there will be certain soft
and collinear degrees of freedom in the phase space for single emission that
are correlated between different emissions. These degrees of freedom are con-
voluted via energy and momentum conservation constraints that define the
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measured kinematical variables, like the invariant mass and the transverse
momentum of an observed final-state system.

These convolutions, non-factorisable in the direct space, are turned into
simple products by applying properly defined transformations. In the case
of threshold resummation, the constraint of energy conservation is factorised
in Mellin space [33]. In the case of transverse-momentum resummation, the
constraint of transverse-momentum conservation is factorised by perform-
ing a Fourier transform to the impact-parameter space [26, 27]. Explicitly,
for multiple emissions of m real partons of four-momenta qi we can define
transferred energies zi and transverse momenta qi⊥. If the total transferred
energy z is measured, which is the case of threshold resummation, the Mellin
transform of the conservation constraint from z-space to N -space is

∫
dz zN−1 δ(z − z1z2 . . . zm) =

m∏

i=1

zN−1
i . (2.33)

The r.h.s. of Eq. (2.33) is fully factorised and each zN−1
i factor realises the

Mellin transform from zi-space toN -space. If the total transverse momentum
q⊥ is measured, which is the case of transverse-momentum resummation, the
Fourier transform of the conservation constraint from q⊥-spaces to the space
of the impact-parameter b is

∫
d2q⊥ e−ib·q⊥ δ(2)(q⊥ − (q1⊥ + q2⊥ . . .+ qm⊥)) =

m∏

i=1

e−ib·qi⊥ . (2.34)

The r.h.s. of Eq. (2.34) is fully factorised and each e−ib·qi⊥ factor realises the
Fourier transform from qi⊥-space to b-space.

2.3 Soft-gluon effects

The correct way to deal with large logarithmic terms of collinear origin is
to resum them into the definition of the parton densities, according to the
solutions of Eq. (2.20). The factorisation scale µ2

F should then be chosen of
the order of the hard scale Q2, so that the residual logarithms ln(Q2/µ2

F ) do
not themselves spoil the convergency of the perturbative series. The same
holds for registered partons in the final state. The fragmentation functions
follow a similar evolution equation as the parton densities, and they should
be evaluated at a (possibly) different scale µ2

f ∼ Q2.
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According to the factorisation theorem any infrared-safe observable de-
fined for hadronic events can be written as a convolution of Parton Distribu-
tion Functions (PDFs) and parton coefficient functions, commonly referred
to as partonic cross sections. As discussed in the introduction, the coefficient
functions can themselves be affected by other large logarithmic terms, if more
than one hard scale is present. The issue is very similar to the one discussed
in the previous section, where the hadron scale Q2

0 ∼ M2
h is replaced by

another scale Q2
0 ≫ M2

h , which is however soft with respect to Q2.

The question of whether a valid perturbative approach can be defined,
and specifically if and how the large logarithms can be resummed, is not
limited to the AP evolution equation for the PDFs, but it must be extended
to more generic processes sensitive to soft-gluon emission. We first consider a
simple example: a jet produced at small invariant mass from e+e− collisions.
It is a two-scale problem, where the centre-of-mass energy Q2 > 0 is large
with respect to the jet mass m2

J . At the leading-order in αS the jet has no
structure and the final-state system consists of two massless partons. One of
them can be identified with the jet of measured mass, with LO momentum
p and energy Ep ∼ Q/2. The other will be the recoiling jet. At the NLO,
the real correction is due the emission of an on-shell gluon of momentum q
and energy ω, radiated by one of the final-state partons at an angle θ. The
differential probability in the collinear limit is

αS

π
dw(1)

r = 2Ca
αS

π

dω

ω

dθ2

θ2
. (2.35)

The physics of the emission is the same as Eq. (2.7), where Ca is the (squared)
charge of the emitter, dω/ω is the bremsstrahlung spectrum and dθ2/θ2 is the
collinear-splitting spectrum. The factor 2 takes into account both the QCD
emitters. Only the soft-collinear eikonal term of the AP splitting probability
has been considered and the non-soft collinear terms have been neglected (see
Section 2.4). The kinematics for the emission is constrained by the m2

J scale,
which defines the maximal mass squared to be measured for the identified
jet. If the LO cross section is σ(0), then

σ = σ(0)

[
1 +

αS

π

∫ (
dw(1)

r + dw(1)
v

)
Θ(m2

J −m2
jet) +O(α2

S)

]
, (2.36)

where mjet is the jet mass defined at the partonic level. With the NLO real
kinematics, the mass of the jet is given by 2p · q = 2ωEp(1− cos θ) ∼ ωEpθ

2,
so that

w(1)
r = 2Ca

∫ Ep

0

dω

ω

∫ 1

0

dθ2

θ2
Θ(m2

J − ωEpθ
2) . (2.37)
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There are two possible sources of infrared divergencies. One is due to the soft
limit ω → 0, or z → 1. The other is the collinear singularity in the θ → 0,
or qT → 0, limit. The virtual correction is due to the self-energy diagram,
where a virtual gluon is emitted and reabsorbed by the same parton. The
differential probability is the same of the real one in Eq. (2.35) and opposite

in sign, dw
(1)
v = −dw

(1)
r . The opposite sign is due to unitarity and it ensures

the cancellation of the singularities, according to the KLN theorem. The real
radiation enhances the cross section, while the virtual radiation suppresses
it. The kinematics of the two contributions is not the same. The virtual
diagram has the same kinematics as the LO, with a zero jet mass, so that
the Heaviside-theta function of Eq. (2.37) is replaced by 1. The sum of the
real and the virtual probability gives

w(1)
r + w(1)

v = −2Ca

∫ Ep

0

dω

ω

∫ 1

0

dθ2

θ2
Θ(ωEpθ

2 −m2
J). (2.38)

The soft region ω < m2
J/Ep and the collinear region θ2 < m2

J/(ωEp) cancel
out in the difference. The total cross section up to the NLO corrections is

σ = σ(0)

[
1− αS

π
Ca ln

2 Q2

4m2
J

+O(α2
S)

]
. (2.39)

The two-scale logarithm ln(Q2/m2
J) can be large in the regime m2

J ≪ Q2,
because of a strong kinematical suppression of the real radiation, so that
αS ln(Q

2/m2
J) ∼ 1. The cross section can even become negative! The cancel-

lation of the infrared poles is ensured by unitarity, but it is highly unbalanced,
at any order of αS in perturbation theory.

A similar result holds for the one-particle inclusive cross section, which
is the topic of Chapter 4. In the following we still consider e+e− collisions,
for simplicity. The cross section does not factorise anymore in the phase-
space where it is defined and a Mellin transform is required. The Sudakov
parameter is x = 2p ·Q/Q2 < 1, where Q is the total momentum available in
the centre-of-mass frame and p is the momentum of the registered final-state
parton. Under a proper LO normalisation σ(0), which does not include the
delta distribution of x, the cross section can be written as

dσ(x) = σ(0)
[
δ(1− x) +

αS

π

(
w(1)

r (x) + w(1)
v (x)

)
+O(α2

S)
]
, (2.40)

where w
(1)
v and w

(1)
r are the probabilities of virtual and real emission, respec-

tively. The virtual emission probability is equal to

w(1)
v (x) = −Ca

∫ Ep

0

dω

ω

∫ 1

0

dθ2

θ2
δ(1− x) Θ(q2T − µ2

f) . (2.41)
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To draw a full analogy with the previous section, the energy fraction is now
z = 1−ω/Ep and the transverse momentum in the collinear limit is qT ∼ ωθ.
The collinear limit is actually protected by the factorisation scale µ2

f : the
final-state parton is not the physical state to be observed. The fragmentation
function describes the evolution of the free parton into a hadronic final state
and it comprises the radiation with small transverse momentum q2T < µ2

f .
The real emission probability is equal to

w(1)
r (x) = +Ca

∫ Ep

0

dω

ω

∫ 1

0

dθ2

θ2
δ(1− x− ω/Ep) Θ(q2T − µ2

f) . (2.42)

The LO kinematical constraint δ(1 − x) of Eq. (2.40), valid for the virtual
corrections (2.41) as well, is due to the zero-mass condition on the recoiling
parton of momentum pr = Q − p. When a real gluon with momentum q is
radiated, the recoiling parton has momentum pr = Q−p−q instead. Now the
zero-mass condition leads to δ(1−x−2pr ·q/Q2). If the gluon is emitted with
energy ω at an angle θ with respect to p, then 2pr·q ∼ 2ωEp(1+cosθ) ∼ 4ωEp.

The delta function in Eq. (2.42) follows from the relation Ep =
√

Q2/2,
valid in the soft limit. The distributions of the x variable, which appear in
Eq. (2.40) but not in Eq. (2.36), are due to the completely exclusive phase-
space of the registered parton. In the previous example, the production of a
light jet, the mass of the jet is instead integrated up to the upper boundary
mJ . By performing the same integration on Eq. (2.40), i.e. the integral of
d(2p·q) over the range (0, m2

J), the x parameter is replaced by themJ/Q ratio,
which effectively becomes the new Sudakov parameter. The LO constraint
is then turned into a constant and the NLO constraint gives rise to the
Heaviside theta function of Eq. (2.37).

The Mellin moment of the total emission probability with respect to x is
completely factorised with respect to the LO cross section. In terms of the
energy fraction z and the transverse momentum qT ∼ θ(1− z)Q,

w
(1)
r,N + w

(1)
v,N = Ca

∫ 1

0

dz

1− z

∫ (1−z)2Q2

µ2

f

dq2T
q2T

(
zN−1 − 1

)
, (2.43)

so that the total cross section in Mellin space, up to the NLO, reads

dσN = σ(0)

[
1 +

αS

π
Ca

∫ 1

0

dz
zN−1 − 1

1− z

(
ln(1− z)2 + ln

Q2

µ2
f

)
+O(α2

S)

]
.

(2.44)
The expression in the r.h.s. of Eq. (2.44) is finite in the soft limit z → 1,
because the pole is regularised by the numerator (zN−1 − 1), which is due
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to the mismatch of the real kinematics (x = z) and the virtual kinematics
(x = 1). The N -moments in Eq. (2.44) were computed in Ref. [35]. It was
shown that, in the large-N limit (x → 1 limit), the Mellin transform can be
calculated via the approximation

zN−1 ∼ Θ(z − (1−N0/N)) , (2.45)

where N0 is a numerical coefficient. The choice N0 = e−γE (γE = 0.5772 . . .
is the Euler number) allows us to control the large logarithmic terms up to
NLL accuracy. With this simple prescription it can be easily obtained that
the plus distributions [ln(1 − z)/(1 − z)]+ and [1/(1 − z)]+ correspond to
double- and single-logarithmic terms αS ln

2(N) and αS ln(N), respectively:
one logarithm is associated to the soft limit of the Bremsstrahlung spectrum
dz/(1−z), the other logarithm is due to the transverse-momentum spectrum
in the collinear limit q2T ∼ (1 − z)2Q2. These terms are both large in the
large-N limit and they should be resummed to all orders.

These simple calculations show that cross sections of observables that are
close to the inclusive boundaries of the phase-space feature up to two powers
of large logarithms for one power of αS. Higher-order terms, formally sup-
pressed with respect to lower-order terms, are made so large that they are
not negligible anymore. The fixed-order calculation is not adequate in order
to extract phenomenologically relevant results and an improved perturbative
treatment is required. We note that process-dependent kinematical details,
such as the hard integration boundary on the longitudinal-momentum frac-
tion and the large-angle boundary on the transverse-momentum, affects the
structure of the large logarithmic corrections. The enhanced logarithmic
terms are not universal and in principle they must be evaluated process-by-
process. In practice it is possible to develop resummation strategies valid for
an entire class of processes that share similar kinematical features, so that
one formula can account for the resummation of several cross sections. The
details on how the logarithms are better organised and exponentiated differ
from process to process (or from class of processes to class of processes) and
may subject to arbitrary choices. In this Chapter we focus on the funda-
mental techniques that make the all-order calculation of large logarithmic
contributions possible. The factorisation and resummation is better under-
stood in the simpler case of the abelian U(1) gauge theory of QED, where the
force carrier, the photon, is electrically neutral. The same approach is then
extended to correctly include the non-abelian dynamics of gluon radiation in
QCD.
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2.4 Soft emission in QED

In the soft limit the essential feature of QED is the complete factorisation
of the infrared singular contributions with respect to the regular terms. The
divergent terms can be completely expressed in terms of the momenta of the
external particles and are independent of the hard interaction. This makes
the all-order treatment of the large logarithmic terms possible.

We start with the definition of the eikonal current. Let p be the momen-
tum of an external (outgoing) fermion line in a QED process. The emission
of a real photon of momentum q and helicity λ from this on-shell fermion of
mass m is described by the matrix element

ū(p)(ieγµ)
−i(p/ + q/+m)

(p+ q)2 −m2
ǫλµ(q) , (2.46)

The spinor ū(p) is due to the on-shell fermion line and is independent of
the emission. The four-vector ǫµ is the polarisation vector of the emitted
photon. The other terms are due to the fermion-photon interaction vertex
and to the virtual fermion propagator. From the on-shellness of the external
photon and the external fermion, the denominator of Eq. (2.46) reduces to
2p ·q. The spin structure can be simplified with the commutation property of
the Dirac γ matrices and by taking advantage of the on-shell Dirac equation
ū(p)(p/−m) = 0. In the soft limit q → 0 the q/ term is negligible and the ū(p)
is simply multiplied by the eikonal factor

e
pµ

p · q ǫ
λ
µ(q) . (2.47)

The same result is found for the emission of a real photon from an ingoing
external fermion line, with the replacement e → −e. The emission of a real
soft photon from a diagram with m external fermion lines can be expressed
in terms of the sum of the eikonal vectors

Jµ(q) =
m∑

i=1

ei p
µ
i

p · q . (2.48)

The charge ei in Eq. (2.48) is equal to the electric charge of lepton i in unit
of the electron charge e, if the fermion line is outgoing and to its opposite if
the fermion line is ingoing. With this choice, the conservation of the total
electric current reads

qµJ
µ(q) =

m∑

i=1

ei = 0 . (2.49)
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If the renormalised transition amplitude for the diagram with m external
fermions (and no soft photons) isM0, the real amplitudeM1 for the emission
of a final-state soft photon is

Mλ
1(p1, . . . , pm; q) ∼ e ǫλµ(q)J

µ(q)M0(p1, . . . , pm) . (2.50)

If theM0 amplitude is finite (free of infrared singularities), theM1 amplitude
is not, due to the divergent structure of Jµ in the soft (or collinear) limit
p · q → 0. The singular contribution is then completely factorised from the
original amplitude M0 and it is expressed in terms of a vector, Jµ, that
is independent of the details of the hard (non-soft) process. The physical
interpretation is that large-wavelength radiation can not resolve the internal
structure of short-distance interactions.

The single-photon emission probability dw
(1)
r is defined, at the amplitude-

squared level, as

|M1(p1, . . . , pm; q)|2 ∼
α

π
dw(1)

r (q) |M0(p1, . . . , pm)|2 , (2.51)

where α = e2/(4π) is the fine-structure constant. The photon phase-space

[dq] =
d4q

(2π)3
δ+(q

2) =
d3q

(2π)3 2ω
, (2.52)

and the sum over the photon polarisations,
∑

λ

[ǫλµ(q)]
∗ǫλν(q) = dµν(q) , (2.53)

are included in dw
(1)
r . The photon energy is ω. After multiplying the expres-

sion in Eq. (2.50) by its complex conjugate, and by factorising the amplitude-
squared of the short-distance process, one gets

dw(1)
r (q) = [dq](2π)2Jµ(q)dµν(q)J

ν(q) =
d3q

4πωq
(−Jµ(q)J

µ(q)) . (2.54)

The photon polarisation tensor dµν contains longitudinal terms that are gauge
dependent, but the probability is independent of such terms and hence gauge
invariant. Indeed any longitudinal term, proportional to the momentum qµ,
vanishes as a consequence of charge conservation in Eq. (2.49). The only
term to give a non-zero contribution is the tensor −gµν .

The explicit expression of dw
(1)
r is

dw(1)
r (q) =

d3q

4πω

∑

i,j 6=i

eiej
pi · pj

pi · q pj · q
. (2.55)
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For simplicity all the lepton are considered massless, so that p2i = 0. In
addition, all the pi · q are vanishing both in the soft and in the collinear emis-
sion limit. The expression in Eq. (2.55) contains double poles, which in turn
are known to give double-logarithmic terms, once the virtual contribution is
subtracted. From unitarity, the virtual emission probability is equal to the
real one but opposite in sign. The different kinematics (loop integral versus
phase-space integral) leads to the logarithms in the total emission probabil-
ity. If a lepton is massive, the collinear limit is not singular and there is
only a soft pole, hence a single non-collinear logarithm. Since the eikonal
approximation has been used in the first place, where non-leading terms in
the soft limit are neglected, all the single-logarithmic terms can be neglected
as well.

In the leading soft-collinear approximation, the photon has to be collinear
to one fermion. Considering Eq. (2.55), if the photon is emitted from lepton
i within an angle θiq which is much smaller than the angles θij between the
lepton momenta, then pi · q ∼ (Eiωq)θ

2
iq/2 and pj · q ∼ (ωq/Ei)pi · pj . For

each momentum pi to which the photon momentum q is collinear, Eq. (2.55)
is independent of any other momentum pj. The sum over j is a sum over
the colour charges and, after charge conservation (2.49), it simply gives the
charge −ei. The result is a sum over independent emitters,

α

π
dw(1)

r (q) =
α

π

m∑

i=1

e2i
dω

ω

dθ2iq
θ2iq

Θ(Q− ω)Θ(θ0 − θiq) . (2.56)

The large-angle radiation cancels due to quantum-interference destructive
effects. Photons radiated at large angles can not resolve the single charges
of the hard process and ‘see’ a zero net charge. On the contrary, the soft-
collinear photon can only be sensitive to the charge of its emitter. This effect
is known as QED coherence. The Heaviside theta functions in Eq. (2.56)
remind us that the expression is valid in the soft limit at scales that are
controlled by the hard scale Q and in the collinear limit where the emission
angle is smaller than θ0 ∼ minij θij . It should be noted that the spectrum of
each emitter is analogous to the single-emission QCD spectrum of Eq. (2.35),
with the obvious replacements of the coupling and the fermion charge. The
reason is that only the eikonal term of the Altarelli-Parisi splitting proba-
bility is present in Eq. (2.35). The eikonal approximation in QCD is further
discussed in Section 2.5.

In the case of multiple soft-photon emission the picture is the same, just
iterated. After the emission of the first photon of momentum q1, the mo-
mentum and the electric charge of the external leptons are unchanged. The
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q2 q1

p+ q1 p p+ q1 + q2
+

p + q1 + q2

q2q1

p+ q2 p

Figure 2.6: Emission of two photons from a fermion line.

probability for the emission of n soft photon is given by the product of the
single emission probability dw

(1)
r for each photon, defined in Eq. (2.55), mul-

tiplied by a 1/n! symmetry factor for n identical bosons in the final-state,

(α
π

)n
dw(n)

r (q1, . . . , qn) ∼
1

n!

(α
π

)n n∏

i=1

dw(1)
r (qi) . (2.57)

Eq. (2.57) can be proved starting from the matrix elements. If the photons are
radiated from different leptons, the total contribution is the simple product of
the eikonal coefficients of each line. In case of multiple emission from the same
lepton, the total contribution is equal to the sum of all the possible ordered
diagrams. For example, the double emission eikonal factor to multiply the
M0 matrix-element is

e2
pµ1pµ2

p · (q1 + q2) + q1 · q2

(
1

p · q1
+

1

p · q2

)
ǫλ1,µ1

(q1) ǫλ2,µ2
(q2) . (2.58)

The denominator in the first fraction of Eq (2.58) is due to the lepton prop-
agator before any emission. The fractions in curly brackets are due to the
propagator between the two emission vertices, one for each contributing di-
agram (Figure 2.58). By neglecting the subleading term q1 · q2 in the first
denominator and by combining the two fractions in the curly brackets, the
result is the simple product of two independent eikonal factors. The same
argument can be generalised to the emission of n soft gluons and the corre-
sponding matrix element Mn is

Mλ1...λn

n (p1, . . . , pm; q1, . . . , qn) ∼ enM0(p1, . . . , pm)
n∏

i=1

Jµi(qi)ǫ
λi
µi
(qi) .

(2.59)
The square of (2.59), summed over the polarisation λi and multiplied by the
phase-space factor [dqi] of each soft-photon, straightforwardly leads to the
multiple emission probability dwn defined in Eq. (2.57).

The all-order real emission probability is equal to the sum of all the
multiple emission probabilities dw

(n)
r , integrated over the phase space [dqi] of
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each emitted photon, with a weight u(qi) fixed by the kinematics. From the
multiplicative form of (2.57),

1 +
∞∑

n=1

1

n!

(α
π

)n n∏

i=1

∫
dw(1)

r (qi)u(qi) = exp

{
α

π

∫
dw(1)

r (q)u(q)

}
. (2.60)

We stress that Eq. (2.60) is valid if and only if the phase space of multiple
emissions simply factorises in the product of phase spaces for single emission,
according to the iterated version of Eq. (2.32) (see Section 2.2).

From unitarity, the virtual differential emission probability must be equal
to the real one and opposite in sign. The virtual emission has however the
same kinematics as the LO process and no further constraint, so that the
total emission probability w is given by the replacement u(q) → u(q)− 1,

w = exp

{
α

π

∫
dw(1)

r (q) [u(q)− 1]

}
. (2.61)

Eq. (2.61) takes into account the all-order soft-photon emission and, with

the single emission probability dw
(1)
r of Eq. (2.56), it resums the leading

logarithmic terms to all orders in α. Note that the normalisation of w in
Eq. (2.61) is the correct one: the total real soft emission, without kinematical
constraints, completely cancels the virtual soft emission (w → 1).

2.5 Factorisation in QCD

If we consider a non-abelian theory like QCD, the gluon self-interactions
play a role. The diagrams for the emission of a soft gluon from a hard
gluon contribute to the total probability and they break the factorisation
of the singular terms. In addition, a gluon always carries a colour charge,
no matter how soft it is. The colour flow is more involved than the electric
current of QED, which flows only through fermion lines. Now the colour
charge is a matrix in colour space, acting on the the colour vector associated
to the hard matrix element. The extension of the eikonal approximation to
QCD requires some ingenuity. It can be shown that the factorisation holds for
the gluon vertex under a proper gauge choice and that any emitter behaves
in the same way in the soft-collinear approximation, being it a fermion or a
gluon. The multiple emission case is even more complicated, because of the
non-commutative colour charges.
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The eikonal factor for a fermion in QCD can be derived via the same steps
followed in the previous Section, with the photon-interaction vertex replaced
by the gluon-interaction vertex. If a soft gluon of momentum q, helicity λ
and colour a is emitted from an outgoing fermion of momentum p and colour
i, the real emission amplitude is equal to

[Mλ
1(p; q)]

a
i = [M0(p)]j gS t

a
ji

pµ

p · q ǫ
λ
µ(q) . (2.62)

For simplicity the dependence on the colours and momenta of the hard pro-
cess, apart from the emitter, is left implicit. The colour tensors taji are the
generators of SU(Nc) in the fundamental representation, of dimension Nc.
In QCD, the indices i, j run from 1 to Nc = 3 and the index a from 1 to
N2

c − 1 = 8. The same amplitude describes the emission from an incoming
antifermion. For an incoming fermion and an outgoing antifermion Eq. (2.62)
is valid with the replacement taji → −(taji)

t = −taij .

From Eq. (2.62) it is clear that the eikonal current is not a simple Lorentz
vector like in QED, but an operator in colour space. The emission of the
same soft gluon from a hard gluon of momentum p, helicity λp and colour b
is described, in the q → 0 limit, by the amplitude

[Mλpλ
1 (p; q)]ab = (Mσ

0)c
[
−gSf

abcV µνρ(−p, 0, p)
] idρσ(p)

2p · q ǫλp

µ (p)ǫλν(q) , (2.63)

where the three-gluon vertex is

Vµνρ(−p, 0, p) = −gµνpρ − gνρpµ + 2gρµpν , (2.64)

and the gluon polarisation tensor can be decomposed in terms of the polar-
isation vectors as in Eq. (2.53). The colour tensors fabc are the generators
of SU(Nc) in the adjoint representation, of dimension N2

c − 1. The four-
gluon vertex, leading to subleading corrections, has been neglected. The first
two terms in the r.h.s. of Eq. (2.64) produce a contribution proportional to
p ·ǫ(p)ǫµ(p), while the third term results in ǫ2(p)pµ. It follows that the matrix
element of Eq. (2.63) depends on the spin of the hard emitter. To overcome
this problem we can choose a physical gauge, where the gluon longitudinal
polarisations vanish, p · ǫ(p) = 0, and the normalisation is ǫ2(p) = 1. With
this gauge choice only the last term in Eq. (2.64) survives and

[Mλpλ
1 (p; q)]ab = [Mσ

0(p)ǫ
λp

σ (p)]c gS if
abc pν

p · q ǫ
λ
µ(q) . (2.65)

The term in square bracket in the r.h.s. of Eq. (2.65) is the Born-level
amplitude [M0]c.
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Comparing Eq. (2.62) with Eq. (2.65) we see that the eikonal factor for
a gluon emitter is analogous to the eikonal factor for a fermion emitter. The
non-abelian colour charge taji for the fermion is simply replaced by the non-
abelian colour charge ifabc for the gluon. In either case the factorisation is not
a scalar factorisation, but holds at a tensor level. It is possible to summarise
these results in a single expression, where the factorisation can be expressed
in terms of colour vectors and colour matrices, by making use of the colour
space notation [66,67]. The colour index c of a parton, being it a fermion or
a gluon, is represented by a vector in an abstract colour space. The possible
quantum states of m partons are represented by a base of vectors |c1 . . . cm〉
in the Fock space and the amplitude of a scattering process between the
partons a1, . . . , am can be thought of as the projection of a vector over this
base,

Mc1...cm
a1...am = 〈c1 . . . cm|Ma1...am〉 . (2.66)

The radiation from the parton ai of a gluon of colour c is described by the
colour charge matrix (Ti)

c. The colour flow is treated as outgoing, such that

(Ti)
c
ij = taij , if ai is an outgoing q or an ingoing q̄ ,

(Ti)
c
ij = −taji , if ai is an ingoing q or an outgoing q̄ ,

(Ti)
c
bc = ifcab , if ai is a gluon . (2.67)

The sign choice is a natural extension of the negative electric charge assigned
to an ingoing fermion. With this choice |M〉 is a colour singlet and the
conservation of the total colour charge reads

m∑

i=1

Ti|Ma1...am〉 = 0 . (2.68)

The exchange of a gluon between two partons i and j corresponds to the
product

Ti ·Tj =
∑

c

(Ti)
c(Tj)

c , (2.69)

The colour algebra for this product gives

T2
i = Cai , Ti ·Tj = Tj ·Ti , (2.70)

where Cai is the Casimir factor of SU(Nc) in the fundamental or adjoint
representation. If a is a gluon then Ca = CA = Nc, if a is a quark or an
antiquark then Ca = CF = (N2

c − 1)/(2Nc). The Casimir is a c-number
and corresponds to the colour structure of a self-interaction diagram, where
the gluon is emitted and reabsorbed by the same parton. It is essentially a
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multiple of the identity operator in colour space. Conversely, the quadratic
operator Ti ·Tj introduces non-trivial colour correlations if i 6= j, related to
the colour flow from parton i to parton j. It is now possible to summarise
the results of Eq. (2.62) and Eq. (2.65) in one expression. In colour space,
the amplitude for the single-emission of a soft gluon is

|Mλ
1(p1, . . . , pm; q)〉 = gS ǫ

λ
µ(q)J

µ(q)|M0(p1, . . . , pm)〉 , (2.71)

where the total eikonal operator Jµ(q) is equal to the sum

J
µ(q) =

m∑

i=1

Ti
pµi

pi · q
. (2.72)

Eqs. (2.72) and (2.71) are equivalent to Eq. (2.48) and (2.50) for QED re-
spectively, if the scalar factorisation is replaced by the general factorisation
in colour space. The importance of dealing with operators, instead of scalars,
is manifest when working with probability. The squared amplitude, summed
over the colours of the external partons, is now defined as

∑

c1...cm

|Mc1...cm
a1...am |2 = 〈Ma1...am |Ma1...am〉 . (2.73)

The single-emission probability, defined as in Eq. (2.51), is then

αS

π
dw(1)

r (q) =
αS

π

d3q

4πω

〈M0(p)| (−Jµ(q)J
µ(q)) |M0〉

〈M0|M0〉
. (2.74)

The dependence over the flavours and colours of the hard partons is un-
derstood. The same arguments already used for the QED case lead to the
expression in Eq. (2.74), where, thanks to gauge invariance, the gluon polar-
isation tensor effectively contribute as dµν = −gµν . It should now be clear
what a non-scalar factorisation implies. While the QED single-emission prob-
ability is truly independent of the detail of the hard-scattering process, the
QCD one instead depends on the actual colour flow, described by the Ti ·Tj

operators due to the contraction Jµ(q)J
µ(q), and by the colour configura-

tion of the hard-scattering amplitude M0. The numerator in the r.h.s. of
Eq. (2.74) is equal to the sum of terms

〈M0(p)|Ti ·Tj|M0〉 . (2.75)

If the operator is a Casimir, i.e. if i = j, then the term is proportional to
the denominator in the r.h.s. of Eq. (2.74) and the dependence over the
hard process cancel out. However, if i 6= j, then the colour algebra does
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Figure 2.7: Colour operator for the soft-gluon emission vertex.

not factorise. The result depends on the colour dynamics of the interference
diagrams contributing to the gluon exchange.

In general the single-emission probability depends on the specific subpro-
cess under consideration. We remind that the simple eikonal approximation
accounts for all the terms that are singular in the soft limit. Any term that
is singular in the hard-collinear emission limit is neglected. However, soft
large-angle radiation is still included. It is reasonable to expect that this
non-collinear contributions are responsible for the colour correlations terms
Ti ·Tj . On the contrary, a collinear gluon should not be able to see any other
charge than the charge of its emitter. At the leading IR approximation, such
that only the soft-collinear terms are considered, the emission probability is
actually free of any colour correlation. The gluon correlations simply can-
cel among themselves [68]. This result, known as colour coherence, is the
consequence of quantum interference between all the possible single-emission
diagrams in JµJ

µ and of gauge invariance, since charge conservation follows
from qµJµ = 0. Following the same reasoning used to derive Eq. (2.56), it
can be shown that

α

π
dw(1)

r (q) =
α

π

m∑

i=1

dw
(1)
r,i (q) , (2.76)

where dw
(1)
r,i is the single-parton-emission probability

dw
(1)
r,i (q) = Cai

dω

ω

dθ2iq
θ2iq

Θ(Q− ω) Θ(θ0 − θiq) . (2.77)

The angle θ0 is the minimum of all the scattering angles θij . If the real (differ-
ential) emission probability is complemented with the virtual one and then
integrated over the soft-gluon phase space, within the proper kinematical
boundaries, the resulting single-emission probability is free of singularities
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but it leads to large logarithmic terms. Eq. (2.76) shows that such a prob-
ability is free of any colour correlation, so that a true scalar factorisation
holds, at the first order in αS and at leading logarithmic accuracy. The same
is not true at higher-orders. The multiple soft-gluon radiation diagrams fea-
ture cascade emissions where the history of subsequent splittings determines
the colour configuration. After any emission, the initial colour charge of
the parent hard parton is shared between the two children partons and the
same happens with each subsequent splitting. After n splittings from m ini-
tial partons, the colour states of the resulting n +m partons are correlated.
Nonetheless, the colour coherent behaviour described by Eq. (2.76) must be
followed by each soft emission. The colour of a soft gluon radiated at an an-
gle θ can not be correlated to the colour of gluons radiated at angles θij ≪ θ.
In a cascade emission, the argument of colour coherence is still valid if the
subsequent splittings are more and more collinear. By enforcing angular or-
dering, the first gluon is radiated at the largest angle and it couples to the
hard emitter with a colour charge proportional to the total colour charge of
the softer gluons, emitted at smaller angles. This total charge corresponds
to the charge of the parent parton and it is therefore independent of the full
branching history.

A QED-like factorisation holds for the singular terms of the multiple soft-
gluon emission probability, if each hard parton ai is considered separately,

dw
(n)
r,i (q1, . . . , qn) ∼

n∏

j=1

dw
(1)
r,i (qj) Θ(θi(j−1) − θij) , (2.78)

and the all-order multiple emission probability is given by the sum over all
the independent angular-ordered cascades originated by the hard partons,

(α
π

)n
dw(n)

r (q1, . . . , qn) ∼
(α
π

)n m∑

i=1

dw
(n)
r,i (q1, . . . , qn) . (2.79)

With respect to Eq. (2.57), the symmetry factor 1/n! is replaced by the
angular ordering in Eq. (2.78). This is strictly related to the non-abelian
nature of QCD, whose charge operators do not commute, at variance with
the scalar charge of QED.

The sum over n = 1, . . . ,∞ of the multiple emission probabilities dw
(n)
r

defined in Eq. (2.79) leads to an exponentiated result. Again, the contri-
bution from each hard parton must be considered on its own. The correct
resummed result is given by the product of independently exponentiated wr,i
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factors,

wr =

m∏

i=1

wr,i(Ei, θ0) . (2.80)

To preserve QCD coherence at all orders, the concept of angular-ordered
partonic cascades must be iterated (Figure 2.8). This leads to a self-similar
structure for wr,i, implicitly defined by the equation

wr,i(Ei, θ0) = exp

{
Cai

αS

π

∫ Ei

0

dω

ω

∫ θ2
0

0

dθ2

θ2
u(q)wr,q(ω, θ)

}
. (2.81)

The energy Ei is the energy of the hard parton ai starting the cascade emis-
sion and θ0 is the maximum angle of radiation, which must be smaller then
any θij angle between the hard emitters. The wr,i probability in the r.h.s. of
Eq. (2.81) is the probability of real emission from the child gluon of energy
ω < Ep, within an angle θ < θ0. Angular ordering is thus guaranteed. The
function u is the usual phase-space constraint that defines the kinematics of
the real emission. The last step consists of the inclusion of the virtual cor-
rections. In the previous section, the virtual terms were fixed by enforcing
the unitarity on the exponentiated result. Along the same lines,

w =

m∏

i=1

wi(Ei, θ0) , (2.82)

wi(Ei, θ0) = exp

{
Cai

αS

π

∫ Ei

0

dω

ω

∫ θ2
0

0

dθ2

θ2
[u(q)wq(ω, θ)− 1]

}
. (2.83)

Eqs. (2.82) and (2.83) resum to all orders the LL terms αn
SL

2n of the soft-
gluon emission probability, in a space where the multiple emission kinematics
factorises with respect to the LO hard kinematics. The dynamical factori-
sation is achieved via the eikonal approximation and thanks to the angular-
ordered colour-coherent branching algorithm.

This is a first approximation. Ideally, also subleading logarithmic terms
should be resummed. At NLO, the NLL terms are the single logarithms,
coming from large-angle soft emissions and collinear hard emissions. The
latter are simply resummed by the full Altarelli-Parisi splitting function, to
be employed in Eq. (2.83) instead of the simple Bremsstrahlung spectrum
dω/ω. The emission of a parton a of energy ω from a parton b of energy Eb

is described by the energy spectrum dzPba(z)/z, where z = 1−ω/Eb. Large-
angle soft radiation is much more complicated, because of colour-interference
effects. The leading collinear case is rather simple because the effective charge
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Figure 2.8: Angular-ordered parton shower.

seen by the collinear gluon is the Casimir of the emitter, a unit matrix in
colour space. If the angular ordering condition is relaxed, the algebra does
not factorise and the multi-gluon emission is expected to be sensitive to the
actual colour flow of the hard process. As shown in the next chapters, it
is still possible to write resummed results which take advantage of a formal
exponentiation. ‘Formal’ exponentiation means that the argument of the
exponential is a colour operator. The formulae are valid in a weak sense,
with the meaning that each matrix in colour space must be interpreted as
(and replaced by) its action on a specific colour state. The hard amplitude
is a vector in colour space, to be decomposed on a colour basis. Each colour
operator has its own eigenvalue on each projection. The resummed formulae
can be made explicit, in the form of Eq. (3.6), by replacing each colour
operator in the argument of the exponent with the proper eigenvalue.

The aim of this Chapter was to illustrate the possible sources of large
logarithmic terms and to present the basic concept behind factorisation and
exponentiation in abelian and non-abelian gauge theories. To focus on QCD,
we have introduced the colour-space formalism and we have showed its im-
portance to the factorisation of the singular infrared contributions. It should
also be clear why the same kernel that describes the DGLAP evolution equa-
tion of the parton densities and fragmentation functions is to be found in
perturbative treatment of soft-gluon effects. The actual resummation for-
mula for an observable of phenomenological interest looks very different to
the expression in Eq. (2.83). In addition its structure will strongly depend
on the kinematics of the process, i.e. on the functional form of the constraint
u.



Chapter 3

Threshold Resummation

In this chapter we focus on the resummation of logarithmic terms that are
singular at the partonic threshold. In the near-threshold region, the centre-
of-mass energy is just enough to produce the final-state hard particles of the
Born-level kinematics and no extra radiation. This is a two-scale problem: if
Q2 is the squared invariant mass of the final-state system and s the squared
centre-of-mass energy, then the Sudakov region, the near-threshold region
in this case, is approached as Q2 → s. In this region the real emission is
strongly inhibited and the partonic cross section contains large logarithmic
terms of argument 1−Q2/s.

According to the factorisation theorem it is possible to decompose an
hadronic cross section into the convolution

dσh1h2→F =
∏

i=1,2

fai/hi
(µ2

F )⊗ dσ̂a1a2→F (µ
2
F , µ

2
f) , (3.1)

where σh1h2→F is the hadronic cross section for the production of the final-
state system F from h1h2 collisions and σ̂a1a2→a3X is the partonic cross section
for the scattering between QCD partons of flavours a1, a2. The distribution
fh/a is the probability, measured at scale µF , that parton a from hadron h
takes part to the scattering. If the final-state system contains an identified
hadron h3, than Eq. (3.1) is replaced by

dσh1h2→h3X =
∏

i=1,2

fai/hi
(µ2

F )⊗ da3/h3
(µ2

f)⊗ dσ̂a1a2→a3X(µ
2
F , µ

2
f) , (3.2)

where function dh/a is the probability, measured at scale µf , that parton a
fragments into hadron h. The partonic cross section defined by Eqs. (3.1),

41
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(3.2) can be written as

dσ̂ = dσ̂(reg) + dσ̂(sing) . (3.3)

The dσ̂(reg) component amounts to the terms which are regular in the Sudakov
limit. The component σ̂(sing) is singular in the Sudakov limit: it contains all
the Sudakov logarithms, organised order by order in αS as provided for the
standard perturbative approach. In the conjugate space where the cross
section admits a full factorisation, the singular component reads

dσ̂(sing) = dΦ({pi}) |M(LO)({pi})|2 C(αS) Σ(αS;L) . (3.4)

The factor C contains the hard-virtual terms that are not suppressed in the
Sudakov limit but are not logarithmically-enhanced and, therefore, do not
need to be resummed. It can be safely expressed as a power series of αS. The
factor Σ realises the fixed-order dependence on the Sudakov logarithms L, as
a power expansion in αS. A resummation prescription essentially consists in
an improved partonic cross section

dσ̂ = dσ̂(reg) + dσ̂(res) , (3.5)

where dσ̂(res) is obtained from dσ̂(sing) with the replacement Σ → Σ(res). The
form factor Σ(res) realises the all-order exponentiation of the logarithms L.
It has the following structure

Σ(res)(αS;L) ∼ exp{Lg1(αSL) + g2(αSL) + αS g3(αSL) + . . . } . (3.6)

The exponent is organised according to the degree of divergence of the var-
ious logarithmic terms and not simply as a series of αS. The function
Lg1(αSL) resums the leading logarithmic (LL) contributions αn

SL
n+1, the

function g2(αSL) the next-to-leading logarithmic (NLL) contributions αn
SL

n

and so forth.

As a case study we choose the Drell-Yan lepton-pair hadroproduction.
The resummation for this process was first completed in [33] and [35]. Since
the two results are equivalent [36], we refer to the work of Catani and
Trentadue, that makes use of the eikonal approximation, the physical gauge,
evolution equations and the other techniques introduced in Chapter 1. At
the partonic threshold the initial-state partons from the colliding hadrons are
the only strong-interacting particles. The colour algebra is simple enough to
completely factorise, and there is no need to move to the abstract colour
space, introduced in Section 2.5. This allows us to focus on a practical im-
plementation of resummation techniques and to stress the important role
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played by the kinematics. We then consider the deep-inelastic scattering
(DIS) process, where the fragmentation of the scattered parton produces
extra enhanced logarithmic terms. The comparison of the two cases, the
Drell-Yan and the DIS processes, allow us to define two fundamental ingre-
dients of threshold resummation, the soft-collinear radiative factor and the
jet function [69].

3.1 The soft-collinear radiative factor

We consider the production of a lepton pair of momentum Q in the collision
of hadrons of momenta P1 and P2,

h1(P1) + h2(P2) → ll̄(Q) +X , (3.7)

where X is any hadronic final-state recoiling against the leptonic system
(Figure 3.1). According to the parton model, at the Born level a quark
and an antiquark from the two hadrons produce by annihilation an excited
neutral boson, Z or γ∗, that in turn decays into the lepton-pair. The mo-
menta p1, p2 of the partons are a fraction of the hadron momenta, pi = xiPi

with xi ∈ (0, 1), with probability described by the PDFs. In the massless
approximation, the hadronic and partonic centre-of-mass energies are

S = (P1 + P2)
2 = 2P1 · P2 , s = (p1 + p2)

2 = 2p1 · p2 = x1x2S . (3.8)

The fraction of the centre-of-mass energy carried by the lepton-pair is the
quantity of interest when approaching the partonic threshold. It is defined,
at the hadronic and the partonic level respectively, as

τh =
Q2

S
, τ =

Q2

s
=

τh
x1x2

. (3.9)

The QCD factorisation theorem ensures that the only mass singularities
in this process are due to collinear radiation form the initial-state partons
a1, a2. As discussed in Chapter 2, these singularities are absorbed by non-
perturbative parton densities fa/h. The cross section is an infrared-safe quan-
tity, equal to

Q2dσ
dy

dQ2
(τh, Q

2) =
∑

a1,a2

∫ 1

0

dx1dx2 fa1/h1
(x1, µ

2
F ) fa2/h2

(x2, µ
2
F )

×
∫ 1

0

dτ δ(τh − x1x2τ)Q
2dσ̂

dy
a1a2

dQ2

(
τ, Q2, µ2

F

)
, (3.10)
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Figure 3.1: Drell-Yan production of a lepton pair.

where µF is the factorisation scale.

The QCD radiative corrections are taken into account in the partonic
cross section dσ̂, which is finite and admits a perturbative expansion in
αS(µ

2
R),

Q2dσ̂
dy
a1a2

dQ2
(τ, Q2, µ2

F ) = σdy
0 (αS(µ

2
R);Q

2)
[
δ(1− τ) δa1qδa2 q̄ +O(αS(µ

2
R))
]
.

(3.11)
The Born cross section σdy

0 fixes the normalisation and µR is the renor-
malisation scale. The lowest-order contribution in the r.h.s. of Eq. (3.11)
corresponds to the Born level. At the Born level, the only partonic channel
to contribute to the process is quark-antiquark annihilation. With no extra
radiation, the lepton invariant mass is forced to be equal to the partonic
centre-of-mass energy, which means τ = 1. At higher-orders any flavour
channel gives a contribution to the total cross section and the variable τ
can assume any value in the range (τh, 1). However, only the terms that are
enhanced by soft-gluon effects in the threshold limit τh → 1 are of interest
for the purpose of resummation. The energy conservation forces the energy
fraction available by the partonic subprocess to the limit τ → 1 and the
longitudinal momentum fraction of the partons to xi → 1, i = 1, 2.

At the partonic level the Sudakov limit is τ → 1. It is important to
understand that not all the terms enhanced in this limit are logarithmic. For
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kinematical reasons the multi-loop virtual corrections are all proportional to
δ(1− τ). The real-emission corrections are either proportional to 1/(1− τ),
singular in the infrared limit, or are regular functions of τ , suppressed (not
enhanced) at threshold. The sum of the infrared real and infrared virtual
radiation defines the 1/(1− τ)+ distributions, source of the large logarithms.
The pure hard-virtual corrections generate residual δ(1 − τ) terms, which
are enhanced but do not need to be resummed. We can then decompose the
partonic cross section as

Q2dσ̂
dy
a1a2

dQ2
(τ, Q2, µ2

F ) = Cdy
a1a2(αS(µ

2
R);Q

2)Wa1a2(αS(µ
2
R); τ, Q

2, µ2
F ), (3.12)

where

Wa1a2(αS; τ, Q
2, µ2

F ) = δ(1− τ) δa1qδa2 q̄ +

∞∑

n=1

(αS

π

)n
W (n)

a1a2(τ, Q
2, µ2

F ) ,

(3.13)

Cdy
a1a2(αS;Q

2) = σdy
0 (αS;Q

2)

[
1 +

∞∑

n=1

(αS

π

)n
Cdy(n)

a1a2 (Q2)

]
. (3.14)

The function W corresponds to the higher-order corrections from soft-gluon
radiation. It can be inferred from the universal behaviour of the QCD in-
frared radiation. The function Cdy is the hard-virtual function. It is process-
dependent and it is free of logarithmic terms. However, it is not suppressed
at threshold: it plays a role already at the NLL accuracy, thanks to the
interference with LL terms. In the following we focus on the resummation
of the infrared function and we forget about the hard-virtual function. The
latter can be calculated order-by-order in perturbation theory, by expanding
the resummed formula and comparing it with the fixed-order result.

In the region of interest only incoming quarks give rise to enhanced terms
at τ → 1, because soft fermion emission is not IR singular. Since soft-
gluon radiation is flavour conserving, only the flavour non-singlet part of W
matters. We can safely set the flavour indices a1, a2 to q, q̄. In the centre-
of-mass frame of p1 and p2 where the energy of the initial-state partons is
p01 = p02 = E ∼

√
Q2/2, the first-order radiative correction in the eikonal

limit is

W
(1)
qq̄ (τ, Q2, µ2

F ) =−
∫

dw
(1)
dy (q) δ(1− τ)

+

∫
dw

(1)
dy (q) δ

(
1− τ − ω

E

)
Θ(q2T − µ2

F ), (3.15)
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where q is the momentum of the radiated (real or virtual) gluon and ω is its

energy. The dependence of dw
(1)
dy on Q2 is left implicit. The first term in the

r.h.s. of Eq. (3.15) is the infrared virtual correction, fixed by unitarity. The
second term is the real correction, integrated with the kinematical constraint
of the single-emission phase-space. The dw

(1)
dy function is the differential

single-emission probability in the soft limit, defined as

dw
(1)
dy (q) = − d3q

4πω
|Jdy(q)|2 . (3.16)

The eikonal factor J
µ
dy for the quark-antiquark channel of the Drell-Yan

process is

J
µ
dy(q) =

pµ1
p1 · q

T1 +
pµ2

p2 · q
T2 . (3.17)

as defined in Chapter 2 by Eqs. (2.72) and (2.74). From colour conservation
it follows that

0 = (T1 +T2)
2 = Ca1 + Ca2 + 2T1 ·T2 = 2 (CF +T1 ·T2) . (3.18)

so that T1 · T2 = −CF , where the scalar CF is the Casimir operator of the
quark. The squared current is then diagonal in colour space,

|Jdy(q)|2 = −CF
2p1 · p2

p1 · q p2 · q
. (3.19)

The result for higher-order corrections is more involved. Non-abelian gluon
correlations are present and they spoil the simple all-order exponentiation
characteristic of an abelian theory like QED. As explained in Chapter 2, these
correlations cancel by gauge invariance in the leading IR approximation and
the exponentiation takes place. The phase-space of this observable factorise
in Mellin space. The Mellin transform at fixed τh of the hadronic cross-section
in Eq. (3.10) is equal to the standard product of the Mellin transforms of
the parton densities and the partonic cross-section W . If N is the variable
conjugated to τh, then the N -moment of the cross-section is

Q2dσ
dy
N

dQ2
(Q2) =

{
fq/h1,N(µ

2
F )fq̄/h2,N(µ

2
F ) + fq̄/h1,N(µ

2
F )fq/h2,N(µ

2
F )
}

×
[
Cdy

qq̄ Wqq̄,N

]
(Q2, µ2

F ) +O(1/N) . (3.20)

The τh → 1 threshold limit corresponds to the N → ∞ limit in Mellin
space. In this region, the non-soft real corrections, that are regular in τh, are
suppressed as inverse powers of N . In the r.h.s. of Eq. (3.20) the (inverse)
Sudakov parameter N is conjugated to x1, x2, τ , which are then forced to 1 in
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the large-N limit. This is consistent with the kinematical constraints. The
hadronic cross section dσ and the infrared function W are power series of
αS. The aim is to replace the fixed-order perturbative expansion of W (αS)
with an improved (resummed) function. In the leading IR approximation
the LL terms are resummed by simply exponentiating the single-emission
probability. Note that the maximum value of the transferred momentum
q2 is (1− z)Q2, which is very different from Q2 in the Sudakov limit. In
terms of the energy fraction z = 1− ω/E and of the transverse momentum
q2T ∼ (1− z)q2, one gets

lnWqq̄,N(Q
2, µ2

F )

=

∫
dw

(1)
dy (q)

αS(q
2
T)

π

[(
1− ω

E

)N−1

− 1

]
Θ(E − ω) Θ(q2T − µ2

F )

= 2
CF

π

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2Q2

µ2

F

dq2T
q2T

αS(q
2
T) +O ((αS lnN)n) . (3.21)

We note that the scale of the running coupling is set by the transverse momen-
tum q2T of the soft-gluon and not by its virtuality q2. It has been shown [70]
that this choice resums leading IR singularities. According to the renor-
malisation group equation, the rescaling αS(q

2) → αS((1− z)q2) corresponds
to

αS((1− z)q2) = αS(q
2)

[
1− β0

2π
αS(q

2) ln(1− z) +O(α2
S)

]
, (3.22)

where β0 = 11/6CA − 1/3nF . The terms in the square brackets belong to
a power series of αS ln(1 − z), corresponding to a power series in αS ln(N)
once the Mellin transform in Eq. (3.21) is worked out. The impact of this
correction is to be found at all the logarithmic levels (also the LL).

A comment on the dynamics of the Drell-Yan process is now in order.
The singular IR terms in Eq. (3.21), which are responsible for the large
logarithms, are due to soft radiation from the initial-state partons (quarks).
Unresolved radiation include soft-collinear gluons, large-angle soft gluons and
hard-collinear gluons. However, if a hard gluon is radiated from the initial-
state, then the momentum loss would be non-negligible and Q2 ≪ s. Such
a contribution exists and has the same LO kinematics of the Born process,
but it belongs to the region τ ≪ 1 and hence τh ≪ 1, away from threshold.
In Mellin space, it is a power-suppressed term. This is of great importance
in order to improve the logarithmic accuracy of the resummed result. The
inclusion of the single-logarithmic terms is restricted to the evaluation of
the soft-gluon eikonal factor to higher orders. The collinear spectrum is the
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same as for the single-emission probability. Subleading terms can be formally
included with the replacement

αS

π
CF → Ath

q (αS) , (3.23)

where the function Ath
a (a = q, g) has the perturbative expansion

Ath
a (αS) =

αS

π
Ca +

∞∑

n=2

(αS

π

)n
Ath(n)

a . (3.24)

The first term of the series in Eq. (3.24) comes from the soft-collinear emis-
sion from parton a. For the Drell-Yan process it must be a = q at threshold,
but the following arguments are independent of the flavour of the hard emit-
ter. Higher-order terms in Eq. (3.24) contribute with additional powers of
αS without logarithmic terms and hence belong to subleading corrections. In
particular, the A

th(2)
a coefficient is needed to reach a NLL accuracy. It can be

inferred by expanding the resummed formula at order O(α2
S) and comparing

the result with from a fixed-order NNLO calculation in the IR limit, with
the constraint that all the additional radiation is soft with respect to the
hard emitter. Under this condition only a soft-collinear gluon, of energy ω1,
is directly emitted from the hard parton a, with probability Ca (large-angle
soft emission is allowed, but its net contribution is zero in view of colour
coherence). A subsequent emission from the soft gluon is described by the
full Altarelli-Parisi splitting probability Pbg(1−ω2/ω1), where b is the flavour
of the second parton (now it can be a gluon or a quark) and ω2 is its energy.
ω2 can be soft or hard, with respect to the energy ω1 of the first soft gluon.
The sum over b = q, g and the integral over ω2 = (0, ω1) lead to the factor
K/2. In the MS scheme,

K =

(
67

18
− π2

6

)
CA − 10

9
TR nF , (3.25)

where nF is the number of massless quark flavours. The first term in the
r.h.s. of Eq. (3.25) is due to a triple gluon vertex and the second one to a

g → qq̄ collinear splitting. The A
th(2)
a coefficient takes into account the soft-

collinear emission of a gluon from a together with its subsequent splitting.
It is then equal to

Ath(2)
a =

1

2
CaK . (3.26)

The exponentiation of Ath
a (αS) with its A

th(2)
a coefficient resums all the miss-

ing NLL terms in Eq. (3.21). In the iterative picture of parton cascades,
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Figure 3.2: Pictorial representation of the all-order resummation formula in
Eq. (3.27). All the accompanying radiation is included in the ∆q radiative
factors.

A
th(1)
a accounts for all the double-logarithmic splittings, where each emission

in the cascade is soft-collinear, and A
th(2)
a for the residual single-logarithmic

collinear branchings. Higher logarithmic accuracies are obtained with the
explicit evaluation of higher-order coefficients A

th(n)
a . The perturbative coef-

ficients A
th(1)
a , A

th(2)
a [35, 37, 43] and A

th(3)
a [71, 72] are explicitly known. The

invariance of the hadronic cross section with respect to µF variations implies
that the function Ath

a (αS) compensates the factorization-scale dependence of
the PDFs, as given by the DGLAP evolution equations. It follows that the
function A(αS) coincides at any perturbative order with the function that
controls the large-N behaviour [73] of the quark (a = q) or gluon (a = g)
anomalous dimension.

At this point we can write a formal all-order threshold resummation for-
mula for the Drell-Yan process. We notice that the contribution to Eq. (3.21)
of the initial-state quark and the initial-state antiquark must be the same.
The overall factor 2 at the exponent accounts for the two collinear regions
q||p1 and q||p2. We can write

Wqq̄,N(Q
2, µ2

F ) =
[
∆q,N(Q

2, µ2
F )
]2

, (3.27)
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where

∆a,N (Q
2, µ2

F ) = exp

{∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2Q2

µ2

F

dq2T
q2T

Ath
a

(
αS(q

2
T)
)
}
.

(3.28)
The radiative factor ∆a resums the large-logarithmic terms due to soft-
collinear emission from parton a. It does so by exponentiating the infrared
single-emission probability, calculated at the desired logarithmic accuracy.
By using the Renormalisation Group Equation for the running coupling, the
integrals in Eq. (3.28) can be explicitly performed at arbitrary logarithmic
accuracy (see e.g. Appendix C of [74]) and the radiative factor can be cast
in the form of Eq. (3.6), with L = ln N .

Beyond NLL accuracy, the effect of soft-gluon radiation at large angles
has to be taken into account and contributes by modifying Eq. (3.27) with
the additional factor

∆(int) = exp

{∫ 1

0

dz
zN−1 − 1

1− z
Dc(αS((1− z)2Q2)

}
, (3.29)

where the perturbative expansion of the function Dc reads

Dc(αS) =
(αS

π

)2
D(2)

c +
(αS

π

)3
D(3)

c +O(α4
S) . (3.30)

The perturbative coefficients D
(2)
c [75, 76] and D

(3)
c [77, 78] are explicitly

known.

The threshold resummation formula for the Drell-Yan cross section, de-
fined by Eqs. (3.20) and (3.27), assigns a radiative factor to each initial-state
parton. We have seen how the kinematics suppresses any hard-collinear emis-
sion, in the near-threshold region. This is not always the case. A typical
example is that of a fully-inclusive jet production. If the momentum of a
final-state parton is not registered, there is no soft constraint on the collinear
emission. The final states of the cascade are integrated over anyway and they
contribute to the same jet at the hadronic level. The soft-collinear radiative
factor of Eq. (3.28) does not contain all the singular terms that are allowed
in this limit. Another collinear function is required, in order to resum the
extra hard-collinear contribution to all orders in αS.
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3.2 The collinear jet function

A simple process with a final-state parton of unconstrained momentum is
the deep inelastic scattering. The kinematics is defined at the beginning of
Section 2.1. If P is the momentum of the scattering hadron, p = xP the
momentum of the initial-state parton and Q that of the space-like photon,
then the transferred momentum fraction at the hadronic and partonic level
are

τ ′h =
Q2

2P ·Q , z =
Q2

2p ·Q =
τ ′h
x
. (3.31)

Note that Q2 is defined as Q2 = −QµQ
µ > 0. In order to compare the DY

and DIS processes we make use of the same factorisation scheme, with the
same parton densities and the same renormalisation and factorisation scale
µ2. For simplicity we forget about the lepton current and we define a cross
section for the hadron-γ∗ scattering,

Q2dσ
dis

dQ2
(τ ′h, Q

2) =
∑

a

∫ 1

0

dx fa/h(x, µ
2
F )

×
∫ 1

0

dz δ(τ ′h − xz)Q2dσ̂
dis
a

dQ2

(
αS(µ

2); z, Q2, µ2
)
, (3.32)

where

Q2dσ̂
dis
a

dQ2
(z, Q2, µ2

F ) = Cdis
a (αS(µ

2
R);Q

2)Fa(αS(µ
2
R); z, Q

2, µ2
F ) (3.33)

is the cross section for the partonic reaction

a(p) + γ∗(Q) → a(p̄) +X . (3.34)

In analogy to Eq. (3.12), the Cdis function includes the process-dependent
contribution at the hard scale, while F takes into account the process in-
dependent soft or collinear QCD radiation from the partons. The Sudakov
region is now approached in the limit τ ′h → 1. At the partonic level it must
be x → 1 and z → 1. Apart from higher-order virtual corrections, the gluon
does not contribute to the scattering against an excited photon. On the
contrary a scattering against a Higgs boson would select the gluon channel.
We focus on Fq = Fq̄. Since the kinematics now let the scattered parton to
radiate hard-collinear partons in the Sudakov limit, it is reasonable to sepa-
rate the pure-soft and the hard-collinear contributions. The function F can
be expressed as a convolution of the functions F soft and Jcoll. The Mellin



CHAPTER 3. THRESHOLD RESUMMATION 52

h
P

γ∗

a

Q

p

fa/h X

a

Maγ∗→aX

p̄

Figure 3.3: Deep inelastic scattering.

transform of the hadronic cross section at fixed momentum transfer τ ′h leads
to the factorised expression

Q2dσ
dis
N

dQ2
(Q2) =

{
fq/h,N(µ

2
F ) + fq̄/h,N(µ

2
F )
} [

Cdis
q F soft

q,N Jcoll
q,N

]
(Q2, µ2

F )

+O(1/N) . (3.35)

The process-dependent terms σdis
0 and Cdis are completely factorised. The

soft function F soft
N is analogous, but not equal, to the Drell-Yan function WN

of Eq. (3.20). The collinear function Jcoll
N is essentially new.

We start with the pure-soft contributions. The calculation of the single-
emission probability in the leading IR approximation is similar to that of
the previous section. The momentum of the scattered parton is p̄ = p+Q,
light-like only at z = 1. The eikonal factor of Eq. (3.19) is replaced by

|Jdis(q)|2 = −CF
2p · p̄

p · q p̄ · q + CF
p̄2

(p̄ · q)2 . (3.36)

The second term in the r.h.s. of Eq. (3.36) is subleading at threshold, since
p̄2 = Q2(1− z)/z. It can be regarded as a non-collinear soft contribution
to the time-like evolution of p̄, or as a collinear non-soft contribution from
the space-like (time-reversed) evolution of the massless final-state parton of
momentum p̄0 = p + Q − q. We put this extra contribution into Jcoll. We
define dw

(1)
dis as in Eq. (3.16), by including only the leading soft-collinear con-

tribution of the eikonal factor, i.e. the first term in the r.h.s. of Eq. (3.36).
After the usual expansion in powers of αS/π, the first-order radiative correc-
tion to F soft has the same structure of Eq. (3.15), if E is defined as energy
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of the initial-state parton in the p,Q rest frame (2E =
√

Q2/(1− z)). The
fixed-order function F soft(αS) can be replaced by a resummed expression by
following the same steps of the previous sections. The all-order result is

F soft
q,N (Q2, µ2

F ) = exp

{∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)Q2

µ2

F

dq2T
q2T

Ath
q

(
αS(q

2
T)
)
}
. (3.37)

The coefficient of Eq. (3.37) is one half of that in Eq. (3.27). The upper
boundary on the transverse-momentum phase-space is also different. In the
DIS process the transferred momentum q2 reaches theQ2 scale, corresponding
to the emission of a hard (collinear) gluon, while it is constrained by (1−z)Q2

in the Drell-Yan process, where only soft-gluon emission is allowed near the
threshold region.

The considerations on the factorisation properties of the colour algebra
for the Drell-Yan production are valid in this case, too. The large-angle soft
radiation vanishes by quantum interference and colour conservation. The full
contribution of the initial-state parton to the F soft

N function is still described
by the soft-collinear factor ∆N of Eq. (3.28). The extra logarithms are due to
radiation from the scattered parton. We define the J soft

N function such that

F soft
a,N (Q2, µ2

F ) = ∆a,N (Q
2, µ2

F ) J
soft
a,N (Q

2) , (3.38)

where the flavour a can refer to a gluon or a quark. From Eqs. (3.28) and
(3.37) it follows that

J soft
a,N (Q

2) = exp

{
−
∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2Q2

(1−z)Q2

dq2T
q2T

Ath
a

(
αS(q

2
T)
)
}
. (3.39)

The exponent of J soft
N has the opposite sign compared to that of ∆N . In a

configuration where initial-state radiation results into Sudakov enhancement,
then the final-state jet-like radiation results into Sudakov suppression, and
vice versa. For that reason the overall factor 2 of WN in Eq. (3.21) is not
reproduced in FN , Eq. (3.37). The contribution of the final-state radiator
cancels part of the contribution of the initial-state radiator. Besides the sign
of the exponent, the behaviour of an undetected parton is very different form
that of a registered parton (otherwise a full cancellation would take place
and lnF soft

N would vanish). This account for the mismatch of the non-soft
transverse-momentum scale between Eqs. (3.28) and (3.39). The phase-space
integral over the parton momentum replaces the convolution with the PDF.
The new function is therefore independent of the factorisation scale µ2. The
parton scatters at the energy scale Q2 of the hard process, corresponding to
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the transverse-momentum scale (1−z)Q2. Eq. (3.39) describes the scale evo-
lution to the soft-collinear limit (1− z)2Q2, due to soft emission at vanishing
angles. A registered parton in comparison starts to radiate at the hard scale
µ2 at which it ‘enters’ the scattering process.

We can now examine the emission of non-soft collinear undetected par-
tons, to be comprised in the Jcoll

N function. It is a NLL function, producing
the single-logarithmic terms of the infrared NLO corrections. Without go-
ing into the details of the calculation, we consider again the single-emission
probability from the Born-level massless emitters p and p̄0. The leading soft-
collinear eikonal term must be supplemented by the Altarelli-Parisi splitting
probability, in order to match with the non-soft collinear behaviour. The
collinear spectrum of each emitter can be isolated via partial fractioning:

p · p̄0
p · q p̄0 · q

=
p · (p+ p̄0)

p · q (p+ p̄0) · q
+

p̄0 · (p+ p̄0)

p̄0 · q (p+ p̄0) · q
. (3.40)

The first term in the r.h.s. of Eq. (3.40) is singular in the soft limit and in
the region q||p. In this collinear region the non-soft terms of the splitting
functions are suppressed in the near-threshold limit, because of the kinemat-
ical restrictions to initial-state radiation, so that the collinear matching has
no effect (it contributes with regular terms). The second term is singular in
the soft limit and in the collinear region q||p̄0. Now the non-soft collinear
emission contributes with singular subleading terms: by using momentum
conservation, i.e. p+Q = p̄0 + q, the kinematical constraint yields

δ
(
p̄20
)
=

1

2p ·Q δ

(
(1− z)− 2p̄0 · q

2p ·Q

)
, (3.41)

and the threshold limit z → 1 corresponds to p̄0 · q → 0, so that q can be soft
but also collinear to p̄0. The bremsstrahlung spectrum for parton a must be
replaced with the Pba(z) probability, summed over b and Mellin transformed
at fixed z. The momentum to be assigned to the parent parton is p̄0/z, so
that the momentum after splitting is p̄0. The leading IR singular term is
already included in function J soft

N and must be subtracted from the result.
The remaining non-soft collinear term is proportional to δ(1 − z) and its
Mellin transform is the flavour-dependent coefficient γa, where

γq = γq̄ =
3

2
CF , γg = β0 =

11

6
CA − 1

3
nF . (3.42)
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Figure 3.4: Pictorial representation of the all-order resummation formula in
Eq. (3.46). All the accompanying radiation is included in the ∆a radiative
factor and in the Ja collinear function.

The exponentiation of the collinear-matched spectrum in the conjugate
space up to NNLL terms [35] leads to

ln Jcoll
a,N(Q

2) = − γa
2π

∫ 1

0

dz
zN−1 − 1

1− z
αS((1− z)Q2))

+O (αS(αS lnN)n) . (3.43)

The function Jcoll does not contain any soft interaction. For this reason there
is no scale evolution in Eq. (3.43) and the emission cascade occurs at the hard
scale q2 = Q2. As regards the running coupling, the correct scale-choice to
include all the NLL terms is the transverse momentum (1 − z)Q2 and not
the virtuality Q2. This point has been already discussed in the previous
section. Finally, the all-order version of Eq. (3.43) can be obtained with the
replacement

αS

π
(−γa) → Bth

a (αS) , (3.44)

where the function Bth
a (a = q, g) has the perturbative expansion

Bth
a (αS) =

αS

π
(−γa) +

∞∑

n=2

(αS

π

)n
Bth(n)

a . (3.45)

The lowest term of the expansion accounts for NLL behaviour, the second
one for NNLL terms and so on. The soft- and hard-collinear factors for an
undetected hard emitter of flavour a can be collected in a single jet function
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Ja,N , such that the IR-singular partonic cross section resummed to all orders
is

Fa,N(Q
2, µ2

F ) = ∆a,N (Q
2, µ2

F ) Ja,N(Q
2)

= ∆a,N (Q
2, µ2

F )
[
J soft
a,N Jcoll

a,N

]
(Q2) . (3.46)

From Eq. (3.39) and Eqs. (3.43),(3.44) it follows that

Ja,N (Q
2) = exp

{∫ 1

0

dz
zN−1 − 1

1− z

[ ∫ (1−z)Q2

(1−z)2Q2

dq2T
q2T

Ath
a

(
αS(q

2
T)
)

+
1

2
Bth

a

(
αS((1− z)Q2)

) ]}
, (3.47)

which essentially describes a small-mass jet recoiling against the Born-level
final state.

The soft-collinear factor ∆a,N and the jet function Ja,N are process-
independent. They describe the infrared behaviour of any collinear emitter
a, registered or unregistered, in any QCD process at the partonic thresh-
old. However, the total singular contribution from a radiating parton in
semi-inclusive limits includes large-angle soft-gluon radiation and this non-
collinear contribution in general does not vanish. It vanishes in scatterings
with two hard partons at the LO, like the Drell-Yan and DIS processes.
The maximum number of partons for which the colour algebra completely
factorises (i.e. the non-collinear contribution cancels out) is three. When
four or more hard partons participate to the Born-level scattering, colour-
correlations induced by soft-gluon exchanges are described by nontrivial (non-
diagonal) colour operators, which can not be reabsorbed in collinear func-
tions. The extension of the resummation formalism to include such contri-
butions is the argument of Chapter 4.



Chapter 4

Single-hadron inclusive
production

In this chapter we consider the threshold resummation for a hard-scattering
reaction where four hard partons are involved at the partonic level. As dis-
cussed in the previous chapter, the soft colour flow between more than three
hard partons can not be reduced to the simple scalar factorisation charac-
teristic of collinear emissions. The contribution from large-angle soft-gluon
radiation is therefore irreducible and the abstract colour-space formalism is
necessary in order to organise the factorisation and exponentiation of all the
singular terms.

The specific observable under consideration is the single-hadron inclu-
sive cross section. At sufficiently-large values of the hadron transverse mo-
mentum, the cross section for this process factorizes into the convolution of
the parton distribution functions of the colliding hadrons with the (short-
distance) partonic cross section and with the fragmentation function of the
triggered parton into the observed hadron. Since the single inclusive cross
section can be easily measured by experiments in hadron collisions, the pro-
cess offers a relevant test of the QCD factorization picture. Conversely, mea-
surements of the corresponding cross section as function of the transverse
momentum and at different collision energies permit to extract quantitative
information about the parton fragmentation (especially, the gluon fragmenta-
tion) function into the observed hadron, thus complementing the information
obtained from hadron production in e+e− and lepton-hadron collisions.

The next-to-leading order (NLO) QCD calculation of the cross section

57
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for single-hadron inclusive production was completed long ago [79–81]. Soft-
gluon resummation of the logarithmically enhanced contributions to the par-
tonic cross section was performed in Ref. [82]. The study of Ref. [82] considers
resummation for the transverse-momentum dependence of the cross section
integrated over the rapidity of the observed final-state hadron, and it ex-
plicitly resums the leading-logarithmic (LL) and next-to-leading logarithmic
(NLL) terms. The results of the phenomenological studies (which combine
NLL resummation with the complete NLO calculation) in Ref. [82] indicate
that the quantitative effect of resummation is rather large, especially in the
kinematical configurations that are encountered in experiments at the typical
energies of fixed-target collisions.

We first present a general expression for the logarithmically enhanced
terms (including the constant term) that correctly reproduces the known
NLO result for the transverse-momentum cross section, at fixed rapidity of
the observed particle. The calculation is performed by using the soft and
collinear approximations of Chapter 2. The result is directly factorised in
colour space, and it allows us to explicitly disentangle colour-correlation and
colour-interference effects that contribute to soft-gluon resummation at NLL
and NNLL accuracy [83].

We then compute the higher-order contributions that dominate near the
partonic threshold limit. We employ the formalism of Ref. [44] to write down
an all-order resummation formula that controls the logarithmically enhanced
contributions. The resummation formula is valid to arbitrary logarithmic
accuracy, and it is explicitly worked out up to the NLL level. The general
expression of the NLO cross section is required in order to determine the
one-loop hard-virtual amplitude that enters into the colour-space factorisa-
tion structure of the resummation formula. This is a necessary ingredient
to explicitly extend the soft-gluon resummation beyond the next-to-leading
logarithmic accuracy.

4.1 NLO results near partonic threshold

In full generality we consider the hard-scattering reaction

h1(P1) + h2(P2) → h3(P3) +X , (4.1)

where the final states are hadronic. The collision of the hadrons h1 and h2 of
momenta P1 and P2 produces the hadron h3 of momentum P3, together with
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an arbitrary recoiling final state X . The momentum P3 is completely fixed.
Not only the energy and the transverse momentum are known, but also the
rapidity of the hadron. According to the QCD factorisation theorem and for
large values of the hadron transverse momentum, the cross section for this
process factorises into the convolution of the parton distribution functions of
the colliding hadrons with the short-distance partonic cross section and with
the fragmentation function of the triggered parton into the observed hadron.
We use parton densities and fragmentation functions as defined in the MS
factorisation scheme, with fa/h(x, µ) as the parton density of the colliding
hadron and da/h(x, µ) as the fragmentation function of the parton a into the
hadron h. The partonic subprocess corresponding to (4.1) is

a1(p1) + a2(p2) → a3(p3) +X , (4.2)

where the index ai (i = 1, 2, 3) denotes the parton species (a = q, q̄, g). The
momenta of the initial-state partons are a fraction xi of the corresponding
hadron momenta, pi = xiPi (i = 1, 2), while the opposite is true for the
fragmenting parton, p3 = P3/x3. At the Born-level, the initial-state partons
produce two final-state particles, one of them with measured transverse mo-
mentum. The flavour a3 is left implicit, in order to describe the contribution
of any partonic channel and any final-state system of two particles. For ex-
ample, if the registered particle is a photon then we expect to recover the
results of [43]. If the produced particles are both QCD partons, the trig-
gered one will fragment into the observed hadron h3, while the other one will
generate a recoiling jet (X). At higher orders in perturbation theory and in
the near-threshold region, the initial-state partons have just enough energy
to produce the triggered final-state parton and a small-mass recoiling jet,
formed by collinear partons.

If dσ̂a1a2→a3(p1, p2, p3) is the inclusive cross section for the partonic reac-
tion, the factorisation of the mass singularities leads to

E3
dσh3

d3P3
(P1, P2, P3) =

∑

a1,a2,a3

∫ 1

0

dx1dx2
dx3

x2
3

f
(x1,µF )
a1/h1

f
(x2,µF )
a2/h2

d
(x3,µf )

a3/h3

× p03
dσ̂a1a2→a3

d3p3
(x1P1, x2P2, P3/x3;µF , µf) . (4.3)

The factorisation scale µF of the parton densities can be different from the
fragmentation scale µf . The partonic cross section dσ̂a1a2→a3 depends on
the factorisation scales. It is computable in QCD perturbation theory as
power series expansion in αS. The perturbative expansion starts at O(α2

S)
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since the leading order partonic process corresponds to the 2 → 2 reaction
a1a2 → a3a4. Up to the next-to-leading order,

dσ̂a1a2→a3(p1, p2, p3;µF , µf) = α2
S(µ

2
R)
(
dσ̂(0)

a1a2→a3a4
(p1, p2, p3)

+
αS(µ

2
R)

2π
dσ̂(1)

a1a2→a3
(p1, p2, p3;µR, µF , µf) +O(α2

S)
)
. (4.4)

The coefficient of the series are renormalised in the MS scheme, at the renor-
malisation scale µR. The LO term dσ̂

(0)
a1a2→a3a4 is directly related to the

Born-level scattering amplitude of the partonic reaction a1a2 → a3a4. The
NLO term dσ̂

(1)
a1a2→a3 is known. The contribution of the partonic subprocess

with non-identical quarks was computed in Refs. [79, 80], and the complete
NLO calculation for all partonic subprocesses was presented in Ref. [81].
The kinematics of the partonic subprocess is usually described in terms of
the independent kinematical variables s, v and w, which are related to the
customary Mandelstam variables s, t, u as follows

v ≡ 1 + t/s , w ≡ −u/(s+ t) , (4.5)

with the corresponding phase-space boundaries

s ≥ 0 , 1 ≥ v ≥ 0 , 1 ≥ w ≥ 0 . (4.6)

With massless kinematics, the partonic Mandelstam variables are

s = 2p1 · p2 , t = −2p1 · p3 , u = −p2 · p3 . (4.7)

Analogous kinematical variables can be introduced for the corresponding
hadronic process in Eq. (4.1). For instance, S = 2P1 · P2 is the square of the
centre-of-mass energy of the hadronic collision. Using the s, v, w variables,
the partonic cross section in Eqs. (4.3) and (4.4) can be written as

p03
dσ̂

d3p3
(p1, p2, p3;µF , µf) =

α2
S(µ

2
R)

π s

[ 1

v

dσ̂(0)(s, v)

dv
δ(1− w)

+
αS(µ

2
R)

2π

1

v s
C(1)(s, v, w;µR, µF , µf) +O(α2

S)
]
, (4.8)

where the flavour indices are left understood. The term in the square bracket
exactly corresponds to the square-bracket term in Eq. (10) of Ref. [81], mod-
ulo the overall factor α2

S(µ
2
R). The first term in the square bracket of Eq. (4.8)

is the Born-level contribution and the function C(1) encodes the NLO correc-
tions.
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The Born-level term in Eq. (4.8) has a sharp integrable singularity at
w = 1. This singularity has a kinematical origin. Indeed (1 − w) is pro-
portional to sX = s + t + u, the invariant mass squared of the unobserved
final-state system X in Eqs. (4.1) and (4.2). X comprises the total QCD
radiation recoiling against the observed hadron h3. At the LO, the system X
is formed by a single massless parton a4(p4) and, therefore, sX = p24 exactly
vanishes. This leads to the factor δ(1−w) in Eq. (4.8). At higher perturba-
tive orders, the LO singularity at w → 1 is enhanced by logarithmic terms of
the type ln(1− w). The enhancement has a dynamical origin, and it is pro-
duced by soft-gluon radiation. In this kinematical region the partonic process
in Eq. (4.2) approaches the near-elastic limit, or ‘partonic threshold’. The
parton a3 is produced with the maximal energy that is kinematically allowed
by momentum conservation, and the recoiling partonic system X is forced
to carry a very small invariant mass. As a consequence, the associated pro-
duction of hard QCD radiation is strongly suppressed. The associated pro-
duction of soft QCD radiation is instead allowed and, due to the soft-gluon
bremsstrahlung spectrum, it generates large logarithmic corrections.

The presence of logarithmically enhanced terms is evident from the known
NLO result. The structure of the NLO term C(1) in Eq. (4.8) is customarily
written in the following form:

C(1)(s, v, w;µR, µF , µf) = C3(v)
(
ln(1− w)

1− w

)

+

+C2(v; s, µF , µf)

(
1

1− w

)

+

+ C1(v; s, µR, µF , µf) δ(1− w) +O
(
(1− w)0

)
. (4.9)

The last term on the right-hand side is a non-singular function of w in the
limit w → 1. Explicit expressions in analytic form can be found in Refs. [79,
80]. The functions C3, C2 and C1 do not depend on w, and they multiply
functions of w that are singular (and logarithmically enhanced) at w → 1.
These singular functions are expressed by δ(1 − w) and customary plus-
distributions [(lnk(1− w))/(1− w)]+ , defined over the range 1 ≥ w ≥ 0.

We are interested in the near-threshold behaviour of the NLO corrections,
hence on the functions C3, C2 and C1 in Eq. (4.9). Each of these functions
depends on the various flavour channels that contribute to the partonic re-
action a1a2 → a3a4. They are all reported in Sect. 3 of Ref. [81]. The
corresponding analytic expressions have a rather involved dependence on v,
colour factors and the flavour channel. In Ref. [83] we have presented the
results of an independent NLO calculation in the kinematical region close
to the partonic threshold. Our results are obtained and expressed in a form
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that is suitable (and necessary) for the all-order treatment and resummation
of the logarithmically enhanced QCD corrections.

To present the our in its factorised form, we employ the representation
of the four-parton scattering amplitude in the colour-space notation [66,67],
presented in Section 2.5. The all-loop QCD amplitude M of the scattering
process in Eq. (4.13) is written as

|Ma1a2a3a4〉 = αS(µ
2
R)

[
|M(0)

a1a2a3a4
〉+

∞∑

n=1

(
αS(µ

2
R)

2π

)n

|M(n)
a1a2a3a4

(µR)〉
]
,

(4.10)
where M(0) is the Born-level contribution, M(n) is the renormalised con-
tribution at the n-loop level. The dependence on the parton momenta pi
(i = 1, . . . , 4) is not explicitly denoted. Real and virtual gluon radiation
from the parton with momentum pi is described by the colour-charge matrix
(Ti)

c (c is the colour index of the radiated gluon) and colour conservation
implies

4∑

i=1

Ti |Ma1a2a3a4〉 = 0 . (4.11)

According to this notation the colour flow is treated as ‘outgoing’, so that
T3 and T4 are the colour charges of the partons a3 and a4, while T1 and
T2 are the colour charges of the anti-partons a1 and a2. Non-trivial colour
correlations are produced by the quadratic operators Ti ·Tj = Tj · Ti with
i 6= j. With i, j = 1, . . . , 4 there are six different operators, but, due to colour
conservation (i.e. Eq. (4.11)), only two of them lead to colour correlations
that are linearly independent (see the Appendix A of Ref. [66]). Two linearly
independent operators are e.g. T1 ·T3 and T2 ·T3. Different choices of pairs
of independent operators are feasible and physically equivalent.

The elastic 2 → 2 process is evaluated exactly at the partonic threshold
(s + t + u = 0), and momentum conservation (p1 + p2 = p3 + p4) implies
that M only depends on two kinematical variables, e.g. s and v. The LO
cross section in Eq. (4.8)) depends on the square of the Born-level scattering
amplitude |M(0)〉,

dσ̂
(0)
a1a2→a3a4(s, v)

dv
=

1

N
(in)
a1a2

1

16π s
|M(0)

a1a2a3a4
|2 , (4.12)

where |M(0)|2 = 〈M(0) | M(0)〉 and the factor N
(in)
a1a2 = 4nc(a1)nc(a2) comes

from the average over the spins and colours (nc(q) = nc(q̄) = Nc, nc(g) =
N2

c − 1) of the initial-state partons a1 and a2.
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At the NLO, the parton cross section receives contributions from two
types of partonic processes. The elastic process

a1(p1) + a2(p2) → a3(p3) + a4(p4) , (4.13)

which has to be evaluated with one-loop virtual corrections, and the inelastic
process in Eq. (4.2) with real emission ofX = {2 partons}, which is evaluated
at the tree level. Virtual and real contributions are separately divergent,
and we use conventional dimensional regularisation (CDR) [84] in d = 4− 2ǫ
space-time dimensions to deal with both ultraviolet and infrared divergences.

The elastic process contributes only to the term proportional to δ(1 −
w) in Eq. (4.9), and its contribution is directly proportional to the renor-
malised one-loop scattering amplitude of the four-parton process. The one-
loop scattering amplitude includes IR-divergent terms that have a process-
independent (universal) structure [67, 85]. In order to present the result of
our calculation we need to provide a definition of the finite part of the virtual
amplitude. The NLO contribution C(1) in Eq. (4.8) depends on the IR-finite
part M(1) fin of the one-loop scattering amplitude. The IR-finite part is ob-
tained through the factorisation formula

|M(1)〉 = I
(1)
sing |M(0)〉+ |M(1) fin〉 , (4.14)

where the colour operator I
(1)
sing embodies the one-loop IR divergence in the

form of double and single poles (1/ǫ2 and 1/ǫ), whileM(1) fin is finite as ǫ → 0.
The Born-level and one-loop (|M(1)〉) scattering amplitudes of the partonic
reaction a1a2 → a3a4 are known [86,87]. To specify the expression of M(1) fin

in an unambiguous way, the contributions of O(ǫ0) that are included in I
(1)
sing

must be explicitly defined. We use the expression

I
(1)
sing =

1

2

1

Γ(1− ǫ)

[
1

ǫ2

4∑

i,j=1
i 6= j

Ti ·Tj

(
4πµ2

R e−iλijπ

2pi · pj

)ǫ

− 1

ǫ

4∑

i=1

γai

(
4πµ2

R s

u t

)ǫ
]
, (4.15)

where e−iλijπ is the unitarity phase factor (λij = −1 if i and j are both
incoming or outgoing partons and λij = 0 otherwise). The flavour dependent
coefficients γa are

γq = γq̄ =
3

2
CF , γg =

11

6
CA − 1

3
nF . (4.16)
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As regards the real corrections in the threshold region w → 1, the in-
elastic process of Eq. (4.2) gives dominant NLO contributions only from two
kinematical configurations of the system X = {2 partons}: either one of
the two partons is soft or both partons are collinear. We have treated these
two configurations by using the soft and collinear factorisation formulae of
Section 2.5 for the scattering amplitudes. The real emission term is finally
combined with the collinear-divergent counterterms necessary to define the
NLO parton densities and fragmentation function.

The final result of our NLO calculation is IR finite and has a factorised
structure. It is given in terms of flavour and colour-space factors that acts
on the scattering amplitude of the four-parton elastic process. Up to regular
O ((1− w)0) terms,

16πN (in) C(1) = 〈M(0)|C(1)|M(0)〉+
(
〈M(0)|M(1) fin〉+ c.c.

)
δ(1− w) ,

(4.17)
where c.c. stands for complex conjugate, and the flavour indices are left
understood. The function C

(1) is the colour-space operator

C
(1)
a1a2a3a4(s, v, w;µR, µF , µf) = 2

(
ln(1− w)

1− w

)

+

[
2

3∑

i=1

T2
i −T2

4

]

−
(

1

1− w

)

+

[
2

3∑

i=1

T2
i

(
ln

1− v

v
+ ln

µ2
F i

s

)
− 2T2

4 ln(1− v)

+ γa4 + 8
(
T1 ·T3 ln(1− v) +T2 ·T3 ln v

)]

+ δ(1− w)

{
π2

2

(
T2

1 +T2
2 + 3T2

3 −
4

3
T2

4

)

− 2T2
3 ln v ln

µ2
f

s
+ 2T2

2 ln
1− v

v
ln

µ2
F

s
−

3∑

i=1

γai ln
µ2
F i

s v(1− v)

+ ln v ln(1− v)
(
T2

4 −T2
1 −T2

2 −T2
3

)

+ ln2(1− v)
(
T2

1 +T2
3 −T2

4

)
+ ln2 v (T2

2 +T2
3) + γa4 ln(1− v)

+T1 ·T3

(
2π2 + 2 ln(1− v) (ln(1− v)− 2 ln v)

)

+T2 ·T3

(
2π2 + 2 ln v (2 ln(1− v)− 3 ln v)

)
+Ka4

}
. (4.18)

In Eq. (4.17) we have introduced the factorisation scales

µF1 = µF2 = µF , µF3 = µf , (4.19)
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and the flavour dependent coefficients

Kq = Kq̄ =

(
7

2
− π2

6

)
CF , Kg =

(
67

18
− π2

6

)
CA − 5

9
nF . (4.20)

The colour operator in Eq. (4.18) contains terms that are proportional to
plus-distributions of w and a term that is proportional to δ(1−w). The action
of the former terms onto the Born-level scattering amplitude as in Eq. (4.17)
directly gives the coefficients C3 and C2 in Eq. (4.9). The sum of the latter
term and the analogous term (which is proportional to M(1) fin) on the right-
hand side of Eq. (4.17) gives the function C1 in Eq. (4.9). Note that a change
in the definition of M(1) fin would be compensated by a corresponding change
in C

(1), so that the total NLO result in Eqs. (4.9) and (4.17) is unchanged.

All the contributions to the NLO colour-space function C
(1) in Eq. (4.18)

have a definite physical origin. The terms that are proportional to the colour
charges Ti are due to radiation (either collinear or at wide angles) of soft
gluons. In particular, the coefficients of (1/(1 − w))+ and δ(1 − w) depend
on colour correlation operators. In Eq. (4.18), we have used the two lin-
early independent operators T1 · T3 and T2 · T3 to explicitly present the
colour correlation contributions. The terms that are proportional to the
flavour-dependent coefficients γa and Ka have a non-soft collinear origin. In
particular, we recall (see Eq. (C.13) in Appendix C of Ref. [66]) that Ka is
related to the (d − 4)-dimensional part (i.e. the terms of O(ǫ)) of the LO
collinear splitting functions. We also remark that the gluonic coefficient Kg

in Eq. (4.20) is exactly equal to the coefficient K in Eq. (3.25) that controls
the intensity of soft-gluon radiation at O(α2

S).

4.2 All-order soft-gluon resummation

We remark that our factorised expression, by keeping explicitly under control
colour-correlation effects, embodies an amount of process-independent infor-
mation that cannot be easily extracted from the results of Ref. [81]. The
knowledge of the abstract colour structure is essential to compute all the
logarithmically enhanced contributions beyond the NLO. Indeed, the colour
interference between this one-loop amplitude and the NLL terms explicitly
determines an entire class of resummed contributions at NNLL accuracy.

To discuss the all-order resummation, we introduce the three independent
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kinematical variables { xω, r, p
2
T } that are defined by

xω = −u+ t

s
, r =

u

t
, p2T =

ut

s
, (4.21)

with the corresponding phase-space boundaries

1 ≥ xω ≥ 0 , r ≥ 0 , p2T ≥ 0 . (4.22)

The variable pT is the transverse momentum of the observed parton a3. In
the centre-of-mass frame of the partonic collision in Eq. (4.2), the variable
xω = 2 p03/

√
s is the energy fraction of the parton a3 and r = (1+cos θ∗13)/(1−

cos θ∗13) is related to its scattering angle θ∗13. The relation with the transverse
momentum and rapidity of the parton a3 is

xω =
2 pT√

s
cosh η , r = e2η . (4.23)

The three independent kinematical variables { s, v, w } are not particularly
suitable for an all-order treatment near threshold, because of their degree
of asymmetry under the exchange u ↔ t. The all-order treatment of the
terms lnn(1 − w) would unavoidably produce an asymmetry with respect
to u ↔ t (see Eq. (4.5)). Any feasible resummed calculations involve the
truncation of the all-order series to some level of logarithmic accuracy and, in
this case, the asymmetry effect is suppressed only by subleading logarithmic
contributions. In practical applications of resummation, this feature can lead
to non-negligible and unphysical asymmetries in the angular distribution of
the produced hadron h3.

In terms of the kinematical variables in Eq. (4.21), the near-threshold
limit corresponds to the region where xω → 1, at fixed values of pT and
r. Therefore, the threshold variable is xω, symmetric with respect to the
exchange u ↔ t. The change of variables { s, v, w } ↔ { xω, r, p

2
T } can be

straightforwardly applied to any smooth functions of these variables. Note
that singular plus-distributions require a slightly more careful treatment,
because of the presence of contact terms at the endpoints w = 1 and xω = 1.
We have

δ(1− xω) =
1

v
δ(1− w) ,

(
1

1− xω

)

+

=
1

v

{(
1

1− w

)

+

+ δ(1− w) ln v

}
, (4.24)

(
ln(1− xω)

1− xω

)

+

=
1

v

{(
ln(1− w)

1− w

)

+

+

(
1

1− w

)

+

ln v +
1

2
δ(1− w) ln2 v

}
.
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Using Eq. (4.24), the change of variables of Eq. (4.21) can be applied to the
complete NLO cross section in Eq. (4.8) and to the NLO results in Eqs. (4.17)
and (4.18). We write the all-order partonic cross section in Eqs. (4.3) and
(4.4) in the following form:

p03
dσ̂a1a2→a3

d3p3
=

1

s
σ(0)
a1a2→a3a4(r, p

2
T ) Σa1a2→a3(xω, r; p

2
T , µF , µf) , (4.25)

where the Born-level cross section σ(0) is

σ(0)
a1a2→a3a4

(r, p2T ) ≡
|M(0)

a1a2a3a4 |2
16π2s

, (4.26)

and |M(0)|2 denotes the average of |M(0)|2 over the spins and colours of the
initial-state partons a1 and a2. The QCD radiative corrections are embodied
in the function Σa1a2→a3 ,

Σa1a2→a3(xω, r; p
2
T , µF , µf) = α2

S(µ
2
R)

[
δ(1− xω)

+
+∞∑

n=1

(
αS(µ

2
R)

2π

)n

Σ(n)
a1a2→a3

(xω, r; p
2
T , µR, µF , µf)

]
. (4.27)

Note that the LO factor α2
S(µ

2
R) is included in the overall normalisation of Σ

and, therefore, the radiative function Σ is renormalisation group invariant.
The explicit dependence on µR appears only by expanding Σ in powers of
αS(µ

2
R), as in Eq. (4.27). We also introduce the definition of the Mellin space

N -moments ΣN of the function Σ(xω), with respect to the variable xω, at
fixed values of r and p2T ,

Σa1a2→a3,N(r; p
2
T , µF , µf) ≡

∫ 1

0

dxω xN−1
ω Σa1a2→a3(xω, r; p

2
T , µF , µf) . (4.28)

The hard scale of the partonic process is related to p2T rather than to s. The
N moment of the singular plus-distribution

[
lnk(1− xω)/(1− xω)

]
+

gives

lnk+1N plus additional subleading logarithms of N . The resummation of
terms with singular distributions of xω corresponds to the resummation of
terms with powers of lnN in Mellin space.

Neglecting contributions of O(1/N) that are subdominant in the near-
threshold limit, we write the radiative function in Eq. (4.28) in the following
form:

Σa1a2→a3,N(r; p
2
T , µF , µf) = Σ res

a1a2→a3a4,N
(r; p2T , µF , µf) +O(1/N) , (4.29)
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where Σ res
N includes the all-order resummation of the lnN terms. Some

corrections of O(1/N) can also be included in Σ res
N . In our resummation

treatment, the factorisation scales µF and µf do not play any specific role.
The dependence on the factorisation scales and on the renormalisation scale
µR is treated as in customary perturbative calculations at fixed order and
the values of µF , µf and µR have to be set to some scale of the order of
PT = P3T , the transverse momentum of the observed hadron. The function
Σ res

N is analogous to the radiative functions WN and FN defined in Eqs.
(3.27) and (3.46), for the Drell-Yan and DIS processes respectively. It plays
the same role, by resumming all the large logarithmic terms. The structure
of Σ res

N is obviously richer (starting at the NLL), because of the four-parton
exchange of soft gluons emitted at large angles. In addition, the process-
dependent terms from the virtual corrections can not be collected anymore
into a simple scalar factor, as it was done with Cdy and Cdis in Eqs. (3.12)
and (3.33). The interference between the multiloop amplitude and the new
NLL terms generates NNLL terms and is therefore part of the resummed
expression, factorised in colour space.

The all-order expression of Σ res
N is obtained by using the techniques of

Ref. [44], which treat soft-gluon resummation in quite general terms. The
BCMN resummation formulae [44] apply to arbitrary multiparton hard-
scattering processes and to general observables that are sensitive to soft-gluon
radiation. The dependence on the specific observable is parametrized by a
Sudakov weight u(q), which is a purely kinematical function. As discussed in
the final part of Ref. [44], in our case of single-particle inclusive production
near threshold, the Sudakov weight is simply u(q) = exp{−N(q ·p4)/(p1 ·p2)},
where p4 is the momentum of the recoiling parton a4 in the elastic-scattering
subprocess of Eq. (4.13). Using this expression for u(q) in the BCMN re-
summed formulae, we directly obtain the resummed expression

Σ res
a1a2→a3a4,N

(r; p2T , µF , µf) =[
∏

i=1,2,3

∆ai,Ni
(Q2

i ;µ
2
F i)

]
Ja4,N4

(Q2
4)

〈MH|∆(int)
N (r; p2T )|MH〉
|M(0)|2 , (4.30)

where MH depends on the flavour indices ai (i = 1, . . . , 4), on the kine-
matical variables r and p2T , and on the factorisation scales µF and µf . Each
factor in the right-hand side of Eq. (4.30) is separately renormalisation group
invariant.

The three radiative factors ∆ai,N (i = 1, 2, 3) in the right-hand side of
Eq. (4.30) embody soft-gluon radiation from the triggered partons a1, a2 and
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a3 of the partonic process in Eq. (4.2). The N -moment factor ∆a,N depends
on the flavour of the radiating parton a, on the partonic hard scale Q2, and on
the factorisation scale of the corresponding parton density or fragmentation
function in the hadronic cross section. It is the same soft-collinear factor
that contributes to the Drell-Yan and DIS resummation formula of Section 3.
We employ the all-order form of Eq. (3.28). The kernel of the exponent is

the perturbative function Ath
a (αS), whose lower-order coefficients A

th(1)
a and

A
th(2)
a , defined in Eqs. (3.24) and (3.26), respectively resum the LL and NLL

terms due to soft-collinear radiation from parton a.

The jet function Ja4,N4
in Eq. (4.30) includes soft and (flavour conserving)

collinear radiation from the parton a4 that recoils against the observed parton
a3 in the tree-level (or, more generally, elastic scattering) process a1a2 →
a3a4. The jet function Ja,N , which depends on the flavour of the radiating
parton a and on the partonic hard scale Q2, is defined in Eq. (3.47). The
kernel Ath

a (αS) is the same perturbative function as in Eqs. (3.28). The NLL
kernel Bth

a (αS) has the same expression as in Eq. (3.45)

The values of Ni and Q2
i (i = 1, . . . , 4) in the argument of the radiative

factors ∆ and J in Eq. (4.30) depend on r, p2T and on the moment index N
of Σ res

N . The specification of this dependence involves some degree of arbi-
trariness (see Ref. [44]) that is compensated by a corresponding dependence

in the terms ∆
(int)
N and MH. We use the Mellin moment values

N1 = N
r

1 + r
, N2 = N

1

1 + r
, N3 = N , N4 = N

r

(1 + r)2
, (4.31)

and the common hard scale

Q2
i = p2T , i = 1, 2, 3, 4 , (4.32)

which unambiguously specify the expressions of ∆
(int)
N and MH that are

presented below. A different choice corresponds to a different definition of
the hard scale and to a different separation between the collinear and the
large-angle emission regions.

The colour-space radiative factor ∆
(int)
N embodies quantum-interference

effects that are produced by soft-gluon radiation at large angles with respect
to the direction of the momenta pi (i = 1, . . . , 4) of the partons in the 2 → 2
hard scattering. Its explicit expression is

∆
(int)
N (r; p2T ) = V †

N(r; p
2
T ) VN(r; p

2
T ) , (4.33)
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where

VN(r; p
2
T ) = Pz exp

{∫ 1

0

dz
zN−1 − 1

1− z
Γ
(
αS

(
(1− z)2p2T

)
; r
)}

. (4.34)

The soft-gluon anomalous dimension Γ(αS; r) is a colour-space matrix, and
the operator Pz denotes z-ordering in the expansion of the exponential ma-
trix. V̄N in Eq. (4.33) is obtained from Eq. (4.34) by replacing Pz with P̄z,
the operator acting in the opposite order. The anomalous-dimension matrix
Γ(αS; r) has the perturbative expansion

Γ(αS; r) =
αS

π
Γ(1)(r) +

∞∑

n=2

(αS

π

)n
Γ(n)(r) , (4.35)

and the explicit expression of the first-order term is

Γ(1)(r) = T2
t ln(1 + r) +T2

u ln
1 + r

r
+ iπ T2

s (4.36)

= T2
t

(
ln(1 + r)− iπ

)
+T2

u

(
ln

1 + r

r
− iπ

)
+ iπ

4∑

i=1

Cai . (4.37)

Note that Γ(1) includes colour correlations, which we have explicitly expressed
in terms of the s- , t- and u-channel colour-correlation operators [88]

T2
s = (T1 +T2)

2 = (T3 +T4)
2 ,

T2
t = (T1 +T3)

2 = (T2 +T4)
2 , (4.38)

T2
u = (T2 +T3)

2 = (T1 +T4)
2 .

They are linearly related by colour conservation:

T2
s +T2

t +T2
u =

4∑

i=4

T2
i =

4∑

i=4

Cai . (4.39)

Note also that Γ(1)(r) and, more generally, Γ(αS; r) depend on the kinemat-
ical (angular) variable r, at variance with the kernels Ath

a (αS) and Bth
a (αS)

(which are independent of the kinematics) of ∆ai,Ni
and Ja4,N4

in Eqs. (3.28)
and (3.47).

The colour-space amplitude |MH〉 depends on the flavour, colour and
kinematical variables of the scattering process a1a2 → a3a4 in Eq. (4.13), and
it is independent of the Mellin moment N . It embodies the residual terms
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Figure 4.1: Pictorial representation of the resummed formula in Eq. (4.30).

of Σ res
N that are constant, i.e. of O(1), and not logarithmically enhanced

in the large-N limit. Its all-order perturbative structure is analogous to the
structure of the scattering amplitude |M〉 in Eq. (4.10). We write

|MH〉 = αS(µ
2
R)

[
|M(0)〉+

∞∑

n=1

(
αS(µ

2
R)

2π

)n

|M(n)
H (µR)〉

]
, (4.40)

where we have omitted the explicit reference to the parton indices a1a2a3a4.
At the lowest order, MH exactly coincides with the Born-level scattering
amplitude M(0). The analogy between MH and M persists at higher or-
ders, since MH also refers to the elastic scattering a1a2 → a3a4 and it can be
regarded as the ‘hard’ component of the virtual contributions to the renor-
malised scattering amplitude M. The amplitude |MH〉 is obtained from
|M〉 by removing its IR divergences and a definite amount of IR finite terms.
The terms that are removed from |M〉 originate from the soft real emis-
sion contributions to the cross section. Therefore, they specifically depend
on the one-parton inclusive cross section. |MH〉 is an observable-dependent
quantity.

The first-order term M(1)
H of MH can be obtained from the results of our

NLO calculation of the partonic cross section near threshold. We consider
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the NLO result in Eqs. (4.17) and (4.18), after the change of variables of
Eq. (4.21). Then we compute its N -moments with respect to xω and, in
the limit N → ∞, we compare this result with the perturbative O(αS) ex-
pansion of the resummation formula in Eq. (4.30). From the comparison we
cross-check that the structure and the coefficients of the double- and single-
logarithmic terms do agree and we extract |M(1)

H 〉 in explicit form, which
reads

|M(1)
H 〉 = |M(1)〉 − I

(1)
H |M(0)〉 . (4.41)

The amplitude |M(1)〉 is the full one-loop scattering amplitude in Eqs. (4.10)

and (4.14). The colour-space operator I
(1)
H has the following explicit form:

I
(1)
H = I

(1)
sing +

π2

4

(
T2

1 +T2
2 +T2

3 +
4

3
T2

4

)
+

1

2

3∑

i=1

γai ln
µ2
F i

p2T

− 1

2
ln(1 + r) ln

1 + r

r

(
T2

1 +T2
2 − 3T2

3 +T2
4

)

−T2
t

(
π2

2
+

1

2
ln2(1 + r) + ln(1 + r) ln

1 + r

r

)

−T2
u

(
π2

2
+

1

2
ln2 1 + r

r
+ ln(1 + r) ln

1 + r

r

)
− 1

2
Ka4 (4.42)

≡ I
(1)
sing + I

(1) fin
H . (4.43)

The operator I
(1)
sing is defined in Eq. (4.15) and the flavour coefficients Ka

are given in Eq. (4.20). Eq. (4.41) can be rewritten in terms of M(1) fin in

Eq. (4.14) and of the IR-finite part of I
(1)
H , as defined by Eq. (4.43). We have

|M(1)
H 〉 = |M(1) fin〉 − I

(1) fin
H |M(0)〉 , (4.44)

which explicitly shows that the one-loop hard-virtual amplitude M(1)
H is IR

finite.

We note that the colour-space factorisation form of our NLO result in
Eqs. (4.17) and (4.18) is essential to obtain the amplitude |M(1)

H 〉. The de-
termination of the amplitude, rather than the colour-summed interference
‘〈M(0)|M(1)

H 〉+ c.c.’, is important for QCD predictions beyond the NLO.

4.3 Extension to NNLL accuracy

The factorised structure of 〈MH |∆(int)
N |MH〉 in colour space entails colour

interferences between ∆
(int)
N and |MH〉. The colour interference effects start
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to contribute at O(α2
S). The dominant logarithmic terms in ∆

(int)
N are of

O(αn
S ln

n N), and we can consider the following approximation:

〈MH|∆(int)
N |MH〉 → 〈M(0)|∆(int)

N |M(0)〉 |MH|2
|M(0)|2 +O (αS(αS lnN)n) ,

(4.45)
which shows that the colour interference effects can be neglected up to
O((αS lnN)n). Starting from O (αS(αS lnN)n), the colour interference ef-

fects are relevant. In particular, 〈MH|∆(int)
N |MH〉 leads to the second-order

contribution

−1

2

(αS

π

)2
lnN

{
+ 2 〈M(0)|

(
Γ(2) + Γ(2) †

)
|M(0)〉

+
[
〈M(0)|

(
Γ(1) + Γ(1) †

)
|M(1)

H 〉+ c.c.
]}

, (4.46)

that is incorrectly approximated by neglecting colour interferences as in the
right-hand side of Eq. (4.45). Using the approximation in Eq. (4.45), the last
term in the curly bracket of Eq. (4.46) would be replaced by

〈M(0)|
(
Γ(1) + Γ(1) †

)
|M(0)〉 〈M

(0)|M(1)
H 〉+ c.c.

|M(0)|2 . (4.47)

The expression in Eq. (4.46) explicitly shows that the second-order anomalous
dimension Γ(2) contributes at the same level of logarithmic accuracy as the
colour interference between Γ(1) and |M(1)

H 〉.

As discussed in the comments to Eq. (4.46), thanks to our factorised for-
mula we can extend the soft-gluon resummation beyond the next-to-leading
logarithmic accuracy. The complete determination of the NNLL terms in GI

requires the explicit inclusion of higher-order terms in the kernels of the radia-
tive functions ∆a,N , Ja,N ,∆

(int)
N . The soft-collinear NNLL terms of Eqs. (3.28)

and (3.47) are controlled by the coefficient A
th(3)
a in Eq. (3.24). It is the

third-order coefficient of the soft part of the Altarelli-Parisi splitting func-
tion Paa(z, αS) and it is already known [71]. The collinear (non-soft) NNLL

terms of Eq. (3.47) are controlled by the coefficient B
th(2)
a in Eq. (3.45).

This term could be extracted from NNLL computations of related processes,
such as DIS [72, 75, 89] and direct-photon production [54]. As regards large-
angle soft-gluon emission, the NNLL terms are generated by the second-order
anomalous dimension Γ(2)(r) in Eq. (4.35) and by the colour interference
(see Eq. (4.46)) between the first-order anomalous dimension Γ(1) and the

one-loop hard-virtual amplitude |M(1)
H 〉. Since Γ(1) and |M(1)

H 〉 are known,
also their interference is known. In the colour-diagonalised expression of
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Eq. (4.49), the interference is taken into account by the correlated depen-

dence on I between C̃
(1)
I and Γ

(1)
I . Finally, the bulk of the contributions to

Γ(2)(r) is expected [37,44,67,90] to be proportional to Γ(1)(r). It is obtained
by inserting the simple rescaling

αS → αS

[
1 +

αS

π

1

2
K

]
(4.48)

in the expression of Γ at O(αS). The coefficient K is given in Eq. (3.25).

We conclude by showing how our colour-space resummation formula can
be cast to an explicit (scalar) formula like that of Eq. (3.6). The all-order
structure of Eqs. (4.30), (3.28), (3.47) and (4.34) leads to the resummation
of the lnN terms in exponentiated form. However, in Eq. (4.34) ‘exponen-
tiation’ has a formal meaning, since it refers to the formal exponentiation
of matrices. The anomalous dimension matrix Γ(αS; r) must be first diago-
nalised in colour space [41, 88]. After that, the resummed radiative function
Σ res

N of Eq. (4.30) can be written in the customary exponential form

Σ res
a1a2→a3a4,N

(r; p2T , µF , µf) =
∑

I

C̃I,a1a2a3a4(αS(p
2
T ), r; p

2
T , µF , µf)

× exp
{
GI,a1a2a3a4(αS(p

2
T ), lnN, r; p2T , µF , µf)

}
+O

(
1

N

)
, (4.49)

where the index I labels the colour-space eigenstates |I(αS; r)〉 of Γ(αS; r),

and C̃ and G are functions (they are not colour matrices). These functions are
renormalisation group invariant, and their dependence on µR arises by writing
αS(p

2
T ) as a function of αS(µ

2
R) and ln(p2T/µ

2
R) (as in customary perturbative

calculations).

The exponent function GI includes all the lnN terms, and it can consis-
tently be expanded in LL terms of O(αn

S ln
n+1N), NLL terms of O(αn

S ln
n N),

NNLL terms ofO(αS(αS lnN)n), and so forth, corresponding to various terms

in the r.h.s. of Eq. (3.6). The function C̃I does not depend on N , since it
includes all the terms that are constant (i.e., of O(1)) in the large-N limit.
The LL terms of GI are actually independent of the colour eigenstate I and
are controlled by the perturbative coefficient A

th(1)
a in Eq. (3.24). The NLL

terms of GI are fully determined by A
th(2)
a of Eq. (3.26), B

th(1)
a of Eq. (3.45)

and the eigenvalues Γ
(1)
I (r) of Γ(1) in Eq. (4.36). The Born-level contribution

to the function C̃I depends on |〈I|M(0)〉|2. The first-order term C̃
(1)
I depends

on the colour interference (〈M(0)|I〉〈 I|M(1)
H 〉 + c.c.)’, which is computable

from the explicit expression of |M(1)
H 〉, given by Eqs. (4.41) and (4.42).



Chapter 5

Transverse-momentum
Resummation

The transverse-momentum (qT) spectrum of high-mass systems produced in
hadronic collisions is sensitive to soft-gluon effects, in the region of vanish-
ing qT. If the final-state system is kinematically constrained to have a small
transverse momentum, the emission of accompanying radiation is strongly
inhibited. In this case only soft and collinear partons can be produced in
the final state, other than the high-mass system. For each radiated parton,
the corresponding cross section contains a single- or double-logarithmic term,
which is singular in the qT → 0 limit. This is analogous to what happens by
approaching the partonic-threshold region (see Chapter 3). Here we focus on
the production of a massive (scalar or vector) boson by the hard-scattering of
partons and we discuss the all-order transverse-momentum resummation, fol-
lowing the BCDG resummation formalism [29]. The same resummed formula
applies to the transverse-momentum distribution of generic colourless high-
mass systems produced in hadron-hadron collisions, such as vector bosons
and lepton pairs, as long as the invariant mass of the system is measured.
The colour algebra for these processes is simple. It factorises into the Casimir
operators of the initial-state partons, while the colour-correlation terms due
to the exchange of non-collinear gluons between the two partons cancel out
in the total amplitude, in the soft limit. The large logarithmic terms are
therefore fully resummed by the radiative factors of the colliding partons,
the Sudakov form factors of the CSS [28] formula. As shown in [91, 92],
the form factors of the conventional resummation formalism are actually
process-dependent. The process dependence can however be collected in one
single coefficient [93] and it is possible to define universal quark and gluon

75
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form factors. The advantage of this approach is that the large logarith-
mic contributions can be exponentiated in a process-independent form, and
the QCD infrared radiation is treated (and understood) in a universal way.
The transverse-momentum distribution for different processes can thus be
described by the the same factorised formula. The effects of non-soft virtual
corrections are fixed by hard-matching, i.e. by comparison with the known
fixed-order results. In Chapter 6 we present an extension of the formalism
in [29] to describe the production of strongly interacting particles and to in-
clude non-trivial colour-correlation effects due to the exchange of large-angle
soft-gluons in multiparton scatterings.

As anticipated in Section 2.2, the resummation has to be carried out in
impact-parameter space, in order to correctly factorise the transverse mo-
mentum constraint for multiparton emission. The impact-parameter was
first introduced in [26], where the (inverse) Sudakov parameter is b2Q2 and
the leading terms are αn

S ln(b
2Q2)2n in the large b limit. The same techniques

were applied [94,95] to a similar process, e+e− annihilation into hadrons, and
they were improved to include resummation of subleading single-logarithmic
terms, first in e+e− annihilation [96], then in the Drell-Yan process [97].

5.1 The transverse-momentum cross section

at NLO

We consider the hadronic collision between two hadrons h1 and h2 with mo-
menta P1 and P2, producing a (composite) final state F of measured invariant
mass M , transverse momentum q⊥ and rapidity y,

h1(P1) + h2(P2) → F (q⊥, y,M,Ω) +X . (5.1)

The system F is a colourless system of one or more non-QCD partons, such
as lepton pairs, vector bosons and Higgs bosons and X denotes all the ac-
companying final-state radiation. Ω represents a set of additional variables
that controls the internal kinematics of system F . We define the hadronic
scaling variables x1, x2 such that M2 = x1x2s and y = 1/2 ln(x1/x2), where
s = (P1+P2)

2 is the square of the centre-of-mass energy of hadronic collision.
Explicitly

x1 =
M√
s
e+y , x2 =

M√
s
e−y . (5.2)

The QCD factorisation theorem connects the cross section dσh1h2→F+X for
the hadronic process in Eq. (5.3) to the cross section dσ̂a1a2→F+X for the
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partonic scattering process

a1(p1) + a2(p2) → F (q⊥, ŷ,M,Ω) +X , (5.3)

where p1, p2 are the four-momenta of the initial-state partons and ŷ is the
rapidity of the system F in the partonic center-of-mass frame. If ξ1, ξ2 are
the longitudinal-momentum fractions of the colliding hadrons carried by the
initial-state partons, such that ξi ∈ (xi, 1) for i = 1, 2, then the relation
between the partonic and hadronic momenta is given by pi = ξiPi. In the
massless-parton approximation, the partonic centre-of-mass energy ŝ = (p1+
p2)

2 and the rapidity ŷ are fully determined by ξ1, ξ2 and by the hadronic
variables s, y:

ŝ = ξ1ξ2s , ŷ = y − 1

2
ln

ξ1
ξ2

. (5.4)

It is also convenient to define the partonic scaling variables z1, z2 such that
M2 = z1z2ŝ and ŷ = 1/2 ln(z1/z2). Explicitly

z1 =
M√
ŝ
e+ŷ , z2 =

M√
ŝ
e−ŷ . (5.5)

We can now define the fully-differential cross section

dσh1h2→F+X(s;q⊥, y,M,Ω)

d2q⊥ dM2 dy dΩ
=

1

s

∑

a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

× fa1/h1
(x1/z1, µ

2
F ) fa2/h2

(x2/z2, µ
2
F )

dσ̂a1a2→F+X(q⊥, z1, z2;M,Ω;µF )

d2q⊥ dz1 dz2 dΩ
.

(5.6)

The partonic cross-section dσ̂a1a2→F+X in the r.h.s. of Eq. (5.6) is computable
in perturbative QCD as a power expansion in αS. At the parton level, in the
lowest-order approximation, the system F is produced with no accompanying
final-state radiation, at zero qT. The Born-level contribution to the cross-
section dσ̂a1a2→F+X is then proportional to δ(q2T)δ(1− z1)δ(1− z2) and is due
to the elastic scattering processes

c(p1) + c̄(p2) → F (q⊥ = 0, ŷ = 0,M,Ω) , (5.7)

where the initial-state partons are quark or gluon pairs (c = q, q̄, g). The
higher-order contributions contain logarithmic terms ln(M2/q2T), singular in
the limit qT → 0. These terms must be resummed to all orders. We can
decompose the partonic cross-section in a singular and a regular part,

dσ̂a1a2→F+X = dσ̂
(sing)
a1a2→F+X + dσ̂

(reg)
a1a2→F+X , (5.8)
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the first containing all the terms that are enhanced in the low-qT region,
the other free of such terms. The dσ̂

(reg)
a1a2→F+X component can be calcu-

lated at fixed orders, while the dσ̂
(sing)
a1a2→F+X component must be replaced by

its resummed version dσ̂
(res)
a1a2→F+X. This is the same procedure sketched by

Eqs. (3.3–3.6). In the following we ignore the finite component, suppressed
at low qT, to focus on the singular terms.

The decomposition of Eq. (5.8) can be straightforwardly applied to the

hadronic cross section in Eq. (5.6). The singular component dσ
(sing)
h1h2→F+X is

then equal to the sum, over all the possible flavours a1, a2, of the convolutions
between the parton densities fa1/h1

, fa2/h2
and the partonic cross-sections

dσ̂
(sing)
a1a2→F+X. We start by considering the perturbative QCD corrections to

the Born-level amplitude of relative order O(αS). In the low-qT region, the
dominant contributions come from the full (hard and soft) one-loop correc-
tions to the elastic scattering processes of Eq. (5.7) and from the tree-level
contribution of the inelastic scattering processes a1a2 → F +X of Eq. (5.3),
where X is either a soft gluon or a hard parton collinear to one of the initial-
state partons a1, a2. The enhanced logarithmic terms can be calculated by
following a procedure similar to that of Chapter 3. The total virtual correc-
tion is decomposed in a hard and a soft contribution. The former is finite
and process dependent and it is equal to an hard-vitual term H(1) propor-
tional to δ(q2T)δ(z1)δ(z2), i.e. to the Born-level kinematics (cfr. Eq. (5.9)).
This term does not contribute with enhanced logarithmic terms and it does
not need to be resummed, in analogy to the Cdis in Eq. (3.12) and Cdy in
Eq. (3.33). The latter, the soft-virtual term, is divergent and universal: it
contains IR poles of QCD, fixed by unitarity [66,67,85,98]. The sum of this
contribution with the collinear counterterms (PDFs) and the real corrections
is finite and amounts to enhanced logarithmic terms, constant terms and
power-suppressed terms.

We give the explicit definition of the hard-virtual term in Section 5.3,
to focus in the following on the real corrections. These can be calculated,
at NLO, by employing the eikonal approximation of the single-emission ma-
trix elements, complemented by the full Altarelli-Parisi splitting functions,
in order to include non-soft collinear radiation. Indeed, at variance with the
partonic-threshold limit, where initial-state and registered partons can con-
tribute only with soft-gluon emissions, the low-qT limit allows both soft and
collinear-hard emissions from initial-state partons. It follows that the eikonal
approximation would not include all the IR poles and singular terms. It is
important to understand the different kinematics of the partonic-threshold
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limit and the vanishing transverse-momentum limit. If we consider Drell-Yan
production or DIS, the enhanced terms are produced in the near-threshold
region, defined by the z → 1 limit: the parameter z = M2/ŝ does not
discriminate between soft and hard-collinear emissions. Now the enhanced
terms are produced in the qT → 0 limit and qT does not discriminate be-
tween soft and hard-collinear emissions neither. Nevertheless, the partonic
cross section in the r.h.s. of Eq. (5.6) is fully-differential with respect to the
total four-momentum qµ of the final-state system F , at fixed center-of-mass
energy ŝ of the partonic collision. Namely, also the invariant mass M2 and
the rapidity ŷ of system F are known, besides its transverse-momentum q⊥,
and this additional information is enough to discriminate between soft and
hard-collinear emissions. From M2/ŝ we can control the partonic-threshold
limit: it corresponds, at fixed M2, to the limit z1z2 → 1, which is reached iff
z1 → 1 and z2 → 1. From ŷ it is moreover possible to distinguish between the
two initial-state partons: the parameter zi (i = 1, 2) describes the softness of
the emission from parton ai and the limit zi → 1 corresponds to soft-gluon
emission from parton ai. In the low-qT limit the parameter zi can be equal
to 1, corresponding to soft (or no) emission from parton ai or smaller than
1, corresponding to the emission of, at least, one non-soft parton collinear to
parton ai.

The singular NLO cross section at the factorisation scale µF reads:

dσ̂sing
a1a2→F+X

d2q⊥ dz1 dz2 dΩ
=

M2

π

∑

c=q,q̄,g

[dσ
(0)
cc̄,F ]

{
δ(q2T) δ(1− z1) δ(1− z2) δca1δc̄a2

+
αS

π
HF (1)

c (M,Ω) δ(q2T) δ(1− z1) δ(1− z2) δca1δc̄a2

+
αS

π
W

dy(1)
cc̄;a1a2(q

2
T, z1, z2;M ;µF ) +O(α2

S)
}
, (5.9)

where

[dσ
(0)
cc̄,F ] =

dσ̂
(0)
cc̄→F (M,Ω)

M2 dΩ
. (5.10)

The first line in the r.h.s. of Eq. (5.9) is the LO contribution and the second
line is the NLO hard-virtual term, with Born-level kinematic (qT = 0, z1 =
z2 = 1). The third line corresponds to the soft corrections from virtual and
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real emission, with single-emission probability W
dy(1)
cc̄;a1a2 equal to

W
dy(1)
cc̄;a1a2 =

[
Cc

(
ln(M2/q2T)

q2T

)

+

− γc

(
1

q2T

)

+

]
δ(1− z1) δ(1− z2) δca1δc̄a2

+

[(
1

q2T

)

+

+ ln
M2

µ2
F

δ(q2T)

](
P (1)
ca1(z1) δ(1− z2) δc̄a2 + P

(1)
c̄a2(z2) δ(1− z1) δca1

)

− δ(q2T)
(
P̂ ǫ
ca1

(z1) δ(1− z2) δc̄a2 + P̂ ǫ
c̄a2

(z2) δ(1− z1) δca1

)
. (5.11)

The first line in the r.h.s. of Eq. (5.11) corresponds to soft-gluon emission and
contains double-logarithmic terms, from soft and collinear divergencies, while
the second one contains only single-logarithmic terms and the third one is
free of enhanced terms. The coefficient Cc is the Casimir operator of parton c
(Cq = Cq̄ = CF , Cg = CA) and the flavour-dependent coeffcient γc is defined
in Eq. (3.42). The second and third lines have an hard-collinear origin: they
are defined in terms of Altarelli-Parisi splitting probabilities of the initial
state partons and they admit contribution far from the partonic-threshold
region z1z2 = 1. Here we have defined the ǫ-dependent unregularised splitting
functions

P̂aibi(z, ǫ;αS) =
αS

π

(
P̂

(1)
aibi

(z) + ǫ P̂ ǫ
aibi

(z) +O(ǫ2)
)
+O(α2

S) , (5.12)

with O(ǫ) lowest-order coefficients equal to

P̂ ǫ
qq(z) =

1

2
CF (1− z) , (5.13)

P̂ ǫ
gq(z) =

1

2
CF z , (5.14)

P̂ ǫ
qg(z) =

1

2
z(1− z) , (5.15)

P̂ ǫ
gg(z) = P̂ ǫ

qq̄(z) = P̂ ǫ
qq′(z) = P̂ ǫ

qq̄′(z) = 0 . (5.16)

The labels q and q′ denote quarks with different flavours. We note that the
P̂aibi(z, ǫ;αS) functions are unpolarised splitting probabilities, independent of
the spin of the radiated partons. This simplification holds only in the qq̄
channel (see Section 5.4) and is lost when the final-state system F has a
non-trivial colour structure and is produced through gluon fusion.

In order to proceed with the exponentiation of the logarithmic terms,
a Fourier transform to the impact-parameter space is required (see Section
2.2). The impact-parameter vector b is conjugate to q⊥ while its norm, the



CHAPTER 5. TRANSVERSE-MOMENTUM RESUMMATION 81

parameter b2 = b2, is conjugate to the transverse-momentum q2T = q2
⊥. The

partonic cross section in b-space reads

dσ̂a1a2→F+X(q⊥; . . .)

d2q⊥ dz1 dz2 dΩ
=

∫
d2b

(2π)2
eib·q⊥

dσ̂a1a2→F+X(b ; . . .)

d2b dz1 dz2 dΩ
. (5.17)

The same definition holds for each q⊥-dependent function in Eq. (5.11). In
order to cast Eq. (5.11) to this form we need to Fourier-transform the qT-
distributions. To this purpose we employ an integral representation of the
plus-distributions in terms of delta-distributions and we transform the latter
to b-space:

1

π

(
lnn(M2/q2T)

q2T

)

+

=
1

π

∫
d2k⊥

lnn(M2/k2
T)

k2
T

(
δ(2)(q⊥ − k⊥)− δ(2)(q⊥)

)

=

∫
d2b

(2π)2
eib·q⊥

1

π

∫
d2k⊥

lnn(M2/k2
T)

k2
T

(
e−ib·k⊥ − 1

)

=

∫
d2b

(2π)2
eib·q⊥

∫ M2

0

dk2
T

lnn(M2/k2
T)

k2
T

(J0(b kT)− 1) . (5.18)

The third line of Eq. (5.18) follows from the integral over the azimuthal
degrees-of-freedom of the transverse momentum k⊥: in this case, with only
two QCD partons involved in the hard scattering, the cross-section is actually
independent of the azimuthal degree-of-freedom, the Fourier transform sim-
plifies to a Bessel transform and the transformed cross-section only depends
on the parameter b. The function J0 is the 0th-order Bessel function. The
region qT ≪ M corresponds to the regionMb ≫ 1 in the conjugate space. To
evaluate the integrals in Eq. (5.18) we can exploit an approximation similar
to Eq. (2.45). The logarithmic contributions at large b can indeed be ob-
tained by observing that the Bessel function J0(b kT) quickly oscillates when
b kT ∼ 1. As a consequence we can simply set

J0(b kT) ∼ Θ(b20/b
2 − k2

T) , (5.19)

where the choice b0 = 2e−γE (γE = 0.5772 . . . is the Euler number) allows
us to control the large logarithmic terms up to NLL accuracy. We get the
simple expression

1

π

(
lnn(M2/q2T)

q2T

)

+

= −
∫

d2b

(2π)2
eib·q⊥

∫ M2

b2
0
/b2

dk2
T

lnn(M2/k2
T)

k2
T

. (5.20)

We can now easily transform Eqs. (5.9) and (5.11) to the conjugate space.
The first two lines in the r.h.s. of Eq. (5.9) are constant in b-space, as well
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as the third line in the r.h.s. of Eq. (5.11). The first and second lines in
the r.h.s. of Eq. (5.11) produce the large logarithmic terms. The former is
trasformed to

−
∫ M2

b2
0
/b2

dk2
T

k2
T

[
Cc ln

M2

k2
T

− γc

]
, (5.21)

and the latter to
∫ b2

0
/b2

µ2

F

dk2
T

k2
T

(
P (1)
ca1(z1) δ(1− z2) δc̄a2 + P

(1)
c̄a2(z2) δ(1− z1) δca1

)
. (5.22)

The expression in Eq. (5.22) is manifestly zero at the factorisation scale
µ2
F = b2/b20. We conclude that the correct choice for the factorisation scale

is a running scale depending on (the inverse of) the impact parameter b,
rather than a fixed scale µF of the order of the hard scale M . This choice
conveniently resums the large logarithmic terms in Eq. (5.22), by including
them into the evolution of the PDFs from the soft scale 1/b to the hard scale
µF (cfr. Eq. (5.33)). The expression in Eq. (5.22) indeed presents the hard-
collinear structure typical of the DGLAP evolution equations, with either z1
or z2 smaller than 1, corresponding to non-soft emission from either parton
a1 or parton a2.

With the choice µ2
F = b2/b20 the convolution between the partonic cross-

section and the PDFs is defined in the conjugate space and the hadronic
cross section has the factorised form

dσh1h2→F+X(s;q⊥, y,M,Ω)

d2q⊥ dM2 dy dΩ
=

M2

s

∑

c=q,q̄,g

[dσ
(0)
cc̄,F ]

∫
d2b

(2π)2
eib·q⊥Sc(M, b)

×
∑

a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

[
HFC1C2

]
cc̄;a1a2

fa1/h1

(
x1

z1
,
b20
b2

)
fa2/h2

(
x2

z2
,
b20
b2

)
,

(5.23)

where M2/b2 power-suppressed terms have been neglected. The symbolic
factor

[
HFC1C2

]
contains all the terms that are constant, i.e. not enhanced,

in the large-b limit: the process-dependent hard-virtual term HF
c and the

universal functions Cca1, Cc̄a2 , that describes unpolarized collinear radiation
from the initial-state partons. These functions admit a fixed-order perturba-
tive expansion in αS and are free of large logarithmic terms. From the NLO
result in Eqs. (5.9) and (5.11) it follows that

HF
c (M,Ω;αS) = 1 +

αS

π
HF (1)

c (M,Ω) +O(α2
S) , (5.24)

Cab(z;αS) = δ(1− z) δab −
αS

π
P̂ ǫ
ab(z) +O(α2

S) . (5.25)
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The O(αS) term of function HF
c (M,αS) is responsible for the hard-virtual

term in the second line of Eq .(5.9) and the O(αS) term of function Cab(z;αS)
produces the third line in the r.h.s. of Eq. (5.11). The function Sc(M, b)
contains the large logarithmic terms of the first line of Eq. (5.11), Fourier-
transformed via the prescription in Eq. (5.20). It is defined, up to NLO, from
the result in Eq. (5.21):

S(f.o.)
c (M, b) = 1− αS

π

∫ M2

b2
0
/b2

dk2
T

k2
T

[
Cc ln

M2

k2
T

− γc

]
+O(α2

S) . (5.26)

The expression in Eq. (5.23), with the functions HF
c , Cab and Sc defined

in Eqs. (5.24), (5.25) and (5.26) respectively, gives the NLO singular con-
tribution to the fully-differential cross section of the hadronic scattering in
Eq. (5.1). The derivation of the resummed cross section from the fixed-order
result is discussed in the following section.

5.2 The resummation formula

The all-order resummed cross section is formally given by the same expression
that defines the fixed-order cross section, in Eq. (5.23), where the function

S
(f.o.)
c in Eq. (5.26) is replaced by its resummed version. This function is

analogous to the corresponding NLO results for the radiative-functions ∆c,N

and Jc,N , whose leading singular terms are resummed by simply exponenti-
ating them (see Chapter 3), with the coupling αS evaluated at the running
scale k2

T [70]. Along the same lines, we promote the expression in Eq. (5.26)
to the exponential

Sc(M, b) = exp

{
−
∫ M2

b2
0
/b2

dk2
T

k2
T

αS(k
2
T)

π

[
Cc ln

M2

k2
T

− γc

]

+O(αS ln(M
2/b2))

}
, (5.27)

valid up to LL accuracy. The subleading terms can be included by employing
the formal prescriptions

+
αS

π
Cc → Ac(αS) , (5.28)

−αS

π
γc → Bc(αS) , (5.29)
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h2

h1
fa1/h1

fb/h2

FHF
c

S
1/2
c

S
1/2
c

Cc̄b

Cca

Figure 5.1: Pictorial representation of the resummation formula in Eq. (5.23)
for DY-like processes. The function Sc is represented as collinear factors of
the two initial-state partons, in order to point out that non-collinear soft-
gluon emissions do not contribute to the cross section, in the low-qT region.

where the functions Ac(αS) and Bc(αS) are perturbative series in αS and
play the same role as Ath

c (αS) and Bth
c (αS) for threshold resummation (see

Chapter 3). The resulting all-order expression is given in Eq. (5.34).

We briefly review the content of the resummation formula. We recall
that the Born-level factor σcc̄,F in Eq. (5.23) is the lowest order cross section
(scattering amplitude) for the partonic subprocess c + c̄ → F , defined in
Eq. (5.10). The remaining process dependence is embodied in the symbolic
factor

[
HFC1C2

]
, with the following explicit form [93]:

[
HFC1C2

]
cc̄;a1a2

= HF
c (M,Ω)Cca1(z1;αS(b

2
0/b

2))Cc̄a2(z2;αS(b
2
0/b

2)) .

(5.30)
The hard-virtual function HF

c receive contributions from the multi-loop ra-
diative corrections to the elastic partonic-scattering process of Eq. (5.7). It
includes, besides the virtual corrections, also the IR poles coming from the
the real corrections and it is therefore finite. The functions Cab(z;αS) are
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universal and only depend on the parton flavours. We note that the scale
of the coupling αS is M2 in the case of HF

c and b20/b
2 in the case of Cab.

This distinction, that can not be inferred from the simple NLO calculation
reported in Section 5.1, is essential to define universal Sudakov form factors
Sc and collinear functions Cab and to capture all the process-dependence in
the hard-virtual term HF

c [93]. We finally note that the explicit expression of[
HFC1C2

]
in Eq. (5.30) is only valid in the case of processes that are initiated

by qq̄ annihilation, and it is more involved in the case of gluon-fusion. More
details are given in Section 5.4. In Eq. (5.23) both the contribution from the
qq̄ annihilation channel (c = q, q̄) and from the gluon fusion channel (c = g)

are included, but one of these two channels may be absent (σ
(0)
cc̄→F = 0), de-

pending on the final-state system F . For example, the production of a Higgs
boson receives contribution only from the gluon-fusion channel, at the Born
level, while the production of a lepton pair only from the qq̄-annihilation
channel.

The parton densities fa/h(b
2
0/b

2) in Eq. (5.23) are related to the parton
densities fa/h(µ

2
F ) according to the DGLAP evolution equations (2.20). In

Mellin space,

fa/h,N(b
2
0/b

2) =
∑

b

Uab,N (b
2
0/b

2, µ2
F ) fb/h,N(µ

2
F ) , (5.31)

where Uab,N is the QCD evolution operator, fulfilling the equations

dUab,N (µ
2, µ2

0)

d lnµ2
=
∑

c

γac,N(αS(µ
2))Ucb,N(µ

2, µ2
0) . (5.32)

This operator resums some large logarithms ln(b20/b
2). In the simple case

where there is a single species of partons, the solution of the evolution equa-
tion (5.32) is

UN(b
2
0/b

2, µ2
F ) = exp

{
−
∫ µ2

F

b2
0
/b2

dq2

q2
γN(αS(q

2))

}
. (5.33)

where γN is the anomalous dimension defined in Eq. (2.25).

The Sudakov form factor Sc is universal and only depends on the type of
the colliding partons, two quarks (c = q, q̄) or two gluons (c = g). Together
with the PDFs evaluated at the scale µ = b0/b, it resums the large logarithms
ln(M2b2). It has the following all-order expression:

Sc(M, b) = exp

{
−
∫ M2

b2
0
/b2

dq2

q2

[
Ac(αS(q

2)) ln
M2

q2
+Bc(αS(q

2))

]}
. (5.34)
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The resummation kernels Ac(αS), Bc(αS) in Eq. (5.34) and the hard functions
HF

c (αS), Cab(z;αS) in Eq. (5.23) are perturbative series in αS,

Ac(αS) =
∞∑

n=1

(αS

π

)n
A(n)

c , (5.35)

Bc(αS) =

∞∑

n=1

(αS

π

)n
B(n)

c , (5.36)

Cab(z;αS) = δab(1− z) +

∞∑

n=1

(αS

π

)n
C

(n)
ab (z) , (5.37)

HF
c (αS) = 1 +

∞∑

n=1

(αS

π

)n
HF (n)

c . (5.38)

The process-independent Sudakov form factor in Eq. (5.34) is analogous to

the radiative factor ∆a,N in Eq. (3.28). The perturbative coefficients A
(1)
c ,

A
(2)
c , B

(1)
c [99–101], B

(2)
c [91,97] and A

(3)
c [57] are explicitly known. The lowest

order ones, A
(1)
c , A

(2)
c , B

(1)
c , are equal to the corresponding coefficients for

threshold resummation, A
th(1)
c , A

th(2)
c , B

th(1)
c , defined in Eqs. (3.24), (3.26),

(3.45). These are the coefficients required at the NLL accuracy. The function
Sc resums the logarithmic terms due to the flavour-conserving emission of real
partons collinear to the initial-state hard partons, in the range 1/b2 < q2 <
M2, from the soft up to the hard scale. Specifically, function Ac(αS) accounts
for soft-collinear emission and function Bc(αS) for non-soft collinear emission.

The residual collinear emission at the soft scale scale q2 ∼ 1/b2 is in-
cluded in the partonic functions Cab. In the ‘hard’ resummation scheme
defined in [102] all the process dependence is collected in the HF

c factor,
while the Cab functions are process-independent. Owing to flavour symme-
try and charge-conjugation invariance of QCD, there are five independent
quark functions Cqa (a = g, q, q′, q̄, q̄′) and two independent gluon functions
Cga (a = g, q). The lowest-order coefficients are explicitly known. The non-
diagonal coefficients do not depend on the process and on the resummation
scheme, while the diagonal ones are process-independent only in the hard
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scheme. In this scheme the first-order coefficients read:

C(1)
qq (z) =

1

2
CF (1− z) , (5.39)

C(1)
gq (z) =

1

2
CF z , (5.40)

C(1)
qg (z) =

1

2
z(1− z) , (5.41)

C(1)
gg (z) = C

(1)
qq̄ (z) = C

(1)
qq′ (z) = C

(1)
qq̄′ (z) = 0 . (5.42)

The coefficients in Eqs. (5.39)-(5.42) are equal to the O(ǫ) part of the lowest-
order Altarelli-Parisi splitting functions in Eqs. (5.13)-(5.16) and could there-
fore be reabsorbed in the PDFs, if a different factorisation scheme is em-
ployed. At the first order in αS, at least for the qq̄ channel, it would be
enough to define the collinear counterterms in terms of the full ǫ-dependent
Altarelli-Parisi probabilities, instead of the same functions at ǫ = 0, as in the
MS scheme. Also the scale of the αS coupling for Cab(z;αS) in Eq. (5.30) is the
correct one (µ2

F = b20/b
2). Finally we note that the hard-virtual terms Cdis in

Eq. (3.12) and Cdy in Eq. (3.33) are analogous to the hard-virtual term HF
c

of Eq. (5.23). The analogue of the Cab coefficients is instead absent in the
case of threshold resummation, in which the enhanced non-logarithmic terms
all appear at z = 1. The second-order coefficients are also known [103, 104].
Recently this result has been confirmed through an independent calculation
based on SCET [105, 106].

In the next section we focus on the HF
c coefficients and we give their

explicit definition in terms of the QCD amplitudes that result from a standard
fixed-order calculation. With a final-state consisting of colourless partons,
the structure of the hard-virtual terms is rather simple. This allow us to
fix the notation and to refer to it in Chapter 6, where the amplitudes are
promoted to vectors in colour-space (see Chapter 4) and the hard-virtual
factors to projections of colour-space operators on colour-states.

5.3 The hard-virtual term

All the information on the process-dependent virtual corrections is contained
in the coefficient HF

c , in the hard scheme. This term can be related, in a
universal way, to the multiloop virtual amplitude Mcc̄→F of the elastic par-
ton scattering of Eq. (5.7). In the center-of-mass frame of the initial-state
partons, the system F has zero transverse momentum, in the absence of
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recoiling radiation. In the following we work with renormalised on-shell scat-
tering amplitudes. Before performing the renormalisation, the QCD ampli-
tude of the process in Eq. (5.7) contains UV and IR singularities, which can
be regularised in the CDR scheme [84] in d = 4− 2ǫ space-time dimensions.
This introduces a perturbative dependence on powers of αu

Sµ
2ǫ
0 , where αu

S is
the bare coupling and µ0 is the dimensional-regularisation scale. In the MS
scheme, the renormalised scattering amplitude is obtained form the unrenor-
malised one by expressing the bare coupling in terms of the running coupling
at the renormalisation scale µ2

R, according to

αu
Sµ

2ǫ
0 Sǫ = αS(µ

2
R)µ

2ǫ
R

[
1− αS(µ

2
R)

β0

ǫ
+O

(
αS(µ

2
R)

2
)]

. (5.43)

The factor Sǫ is
Sǫ = (4π)ǫe−ǫγE . (5.44)

The all-order perturbative expansion of the renormalised amplitude can be
formally written as

Mcc̄→F (p1, p2; {qi}) =
(
αS(µ

2
R)µ

2ǫ
)k [M(0)

cc̄→F (p1, p2; {qi})

+
∞∑

n=1

(
αS(µR)

2π

)n

M(n)
cc̄→F (p1, p2; {qi};µR)

]
, (5.45)

where the value k of the overall power of αS depends on the specific process.
The leading-order factor αk

S(µ
2
R) is included in the normalisation of the am-

plitude, so that the rest of the expression is renormalisation group invariant.
The momenta {qi} are the momenta of the n particles in the final-state sys-
tem F , such that (q1 + q2 + . . . qn)

2 = M2 and q1⊥ + q2⊥ + . . .qn⊥ = 0. The

amplitude M(0)
a1a2→F is the Born-level contribution, M(n)

a1a2→F are the per-

turbative terms at the n-loop level, renormalised in the MS scheme. These
terms are UV finite but still IR divergent in the ǫ → 0 limit.

The IR divergent terms have a universal structure, which is known at
one-loop [66, 67, 85, 98], two-loops [67, 107, 108] and three-loop order for the
class of processes in (5.7). It is then possible to define the auxiliary finite
hard-virtual amplitude [102]

M̃cc̄→F (p1, p2; {qi}) =
[
1− Ĩdyc (ǫ,M)

]
Mcc̄→F (p1, p2; {qi}) , (5.46)

where Ĩc is a process-independent IR subtraction factor. It only depends
on the type c of the colliding partons and on the invariant mass M of the
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final-state system F , but not on its internal structure. The dependence on ǫ
is fixed at the level of the poles, in such a way that the amplitude M̃cc̄→F is
free of any pole in ǫ. The operator [1− Ĩc] thus remove every pole of Mcc̄→F

and some of its IR finite terms. The factorisation formula in Eq. (5.46) can

be regarded as the implicit definition of factor Ĩc, order by order in αS and
up to terms that are finite as ǫ vanishes. The all-order expansion of the IR
subtraction factor is

Ĩdyc (ǫ,M) =
∞∑

n=1

(
αS(µ

2
R)

2π

)n

Ĩdy(n)c (ǫ,M ;µR) . (5.47)

The coefficients Ĩ
dy(n)
c depend on the renormalisation scale through the di-

mensionless ratioM2/µ2
R. The amplitude M̃cc̄→F admits the same expansion

of (5.45), in function of perturbative terms M̃(n)
cc̄→F that are free of ǫ-poles.

Explicitly, the first two terms of the expansion are

M̃(0)
cc̄→F = M(0)

cc̄→F , (5.48)

M̃(1)
cc̄→F = M(1)

cc̄→F − Ĩdy(1)c (ǫ,M ;µR)M(0)
cc̄→F . (5.49)

At the Born-level, the two amplitudes are equal, being the LO amplitude free
of IR divergencies. At higher orders in αS, the subtracted amplitude M̃cc̄→F

depends on the multiloop amplitudes and subtraction operators at equal or
lower orders. The explicit expression of the first-order subtraction factor Ĩ

(1)
c

is
Ĩdy(1)c (ǫ,M ;µR) = Ĩ(1)softc (ǫ,M2/µ2

R) + Ĩ(1)collc (ǫ,M2/µ2
R) , (5.50)

with

Ĩ(1)softc (ǫ,M2/µ2
R) = − eǫγE

Γ(1− ǫ)

(
1

ǫ2
+ iπ

1

ǫ

)
Ca

(
µ2
R

M2

)ǫ

, (5.51)

Ĩ(1)collc (ǫ,M2/µ2
R) = −1

ǫ
γa

(
µ2
R

M2

)ǫ

. (5.52)

The Ĩ
(1)soft
c factor subtracts the soft-collinear double pole and the Ĩ

(1)coll
c factor

subtracts the collinear (non-soft) single pole.

We can now give the definition of the hard-virtual resummation coefficient
HF

c in terms of the subtracted amplitude M̃cc̄→F ,

HF
c (p1, p2;αS(M

2)) =
|M̃cc̄→F (p1, p2; {qi})|2

α2k
S (M2) |M̃(0)

cc̄→F (p1, p2; {qi})|2
, (5.53)
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which is the last ingredient of the resummation formula in Eq. (5.23). We
note that the IR subtraction operators in Eqs. (5.51),(5.52) are defined up
to arbitrary terms that are finite in the limit ǫ → 0. A different choice would
result in a different definition of the HF

c (αS) factor and of the Cab(z;αS) func-
tion. Any difference in the hard-collinear factor would be compensated by an
opposite contribution to the constant factor of the partonic functions, i.e. the
terms proportional to δ(1−z). The total result would be unchanged, but some
process-dependent terms of virtual origin would be moved from the hard-
virtual factor to the partonic functions. The definition in Eqs. (5.51),(5.52)
is the only one possible in the hard-scheme, where all the process-dependent
information is contained in the single factor HF

c (αS).

5.4 Gluon fusion

The resummation formula presented in Section 5.2 was originally proposed
for processes where the production of the final-state system is controlled by
quark-antiquark annihilation. The same formalism has been naively applied
to the gluon fusion subprocess, under the assumption that spin correlations
do not play any role if the observable is not sensitive to the azimuthal degree-
of-freedom of the final-state system. While this is true for cross-sections eval-
uated at a fixed-order in perturbation theory, it turns out that the resumma-
tion formula for the gluon fusion channel has an additional structure [64] with
respect to that of Eq. (5.23), due to the collinear evolution of the colliding
hadrons into the gluon partonic initial states.

Without entering into the details, we just mention that the resummation
formula in Eq. (5.23) is valid at all orders for the qq̄ annihilation channel
(c = q), with the symbolic factor

[
HFC1C2

]
defined in Eq. (5.30). In the

case of processes initiated by gluon fusion (c = g), the same factor has the
following explicit form,

[
HFC1C2

]
gg;a1a2

= HF
g;µ1ν1,µ2ν2

(p1, p2,Ω;αS(M
2))

× Cµ1 ν1
g a1 (z1; p1, p2,b;αS(b

2
0/b

2))Cµ2 ν2
g a2 (z2; p1, p2,b;αS(b

2
0/b

2)) , (5.54)

where the function HF
g admits a perturbative expansion analogous to that

in Eq. (5.38), with lowest-order normalisation

HF (0)µ1ν1,µ2ν2
g gµ1ν1 gµ2ν2 = 1 . (5.55)
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The analogue of Eq. (5.53) is

HF µ1ν1µ2ν2
g (p1, p2,Ω;αS(M

2)) =

dµ1

µ′

1

dν1ν′
1

dµ2

µ′

2

dν2ν′
2

[
M̃µ′

1
µ′

2

gg→F (p1, p2; {qi})
]†
M̃ν′

1
ν′
2

gg→F (p1, p2; {qi})

α2k
S (M2) |M(0)

gg→F (p1, p2; {qi})|2
, (5.56)

where dµν = dµν(p1, p2) is the polarization tensor in Eq. (5.59) and it projects
onto the Lorentz indices in the transverse plane. The gluonic tensor Cµν

ga in
Eq.(5.54) is

Cµν
g a(z; p1, p2,b;αS) = dµν(p1, p2) Cg a(z;αS) +Dµν(p1, p2;b) Gg a(z;αS) .

(5.57)
The first term in the r.h.s. of Eq. (5.57) is equivalent to the content of
Eq.(5.30), while the second term is specific to gluon fusion and originates from
the spin-dependent and qT-dependent Altarelli-Parisi splitting probabilities
[P̂ga(z,q⊥)]

µν that control the collinear evolution of the PDFs for a polarised
gluon. It is part of the collinear splitting function (tensor) of the gluon and it

At the first perturbative order we can replace the splitting function P̂
(1)
g a (z),

corresponding to an unpolarised gluon, with

[
P̂ (1)
ga (z,q⊥)

]µν
= −gµν P̂ (1)

ga (z) +

(
gµν + 2

qµTq
ν
T

q2
⊥

)
2G(1)

ga (z) , (5.58)

where the coefficients G
(1)
g a(z), given in Eq. (5.61), control gluon spin cor-

relations that have no analogue in quark-antiquark annihilation processes.
The Fourier transform of Eq.(5.58) to b-space produces the Cµν

ga tensors of
Eq. (5.57). If bµ = (0,b, 0) is the impact-parameter vector in the four-
dimensional notation (bµbµ = −b2), then the two tensors in Eq. (5.57) read

dµν(p1, p2) = −gµν +
pµ1p

ν
2 + pµ2p

ν
1

p1 · p2
, (5.59)

D µν(p1, p2;b) = dµν(p1, p2)− 2
bµ bν

b2
. (5.60)

The gluonic coefficient functions Cg a(z;αS) are given in Eq. (5.37): they
start at O(α0

S) and have first-order coefficients in the hard scheme as defined
in Eqs. (5.39)-(5.42). The perturbative expansion of the coefficient functions
Gga instead starts at O(αS),

Gg a(z;αS) =
αS

π
G(1)

ga (z) +
∞∑

n=2

(αS

π

)n
G(n)

ga (z) , (5.61)



CHAPTER 5. TRANSVERSE-MOMENTUM RESUMMATION 92

with first-order coefficients that are resummation-scheme independent and
equal to [64]

G(1)
ga (z) = Ca

1− z

z
, (5.62)

where Ca is the Casimir coefficient of parton a.

It can be shown that, for a final-state system of spin 0 (e.g. F = H), the
resummation factor is [64]

[
HFC1C2

]
gg;a1a2

= gµ1ν1gµ2ν2 H
F µ1ν1µ2ν2
g (αS(M

2))

×
[
Cga1(z1;αS(b

2
0/b

2))Cga2(z2;αS(b
2
0/b

2))

+ Gga1(z1;αS(b
2
0/b

2))Gga2(z2;αS(b
2
0/b

2))
]
. (5.63)

We note that the term Gga(αS)Ggb(αS) in Eq. (5.63) starts at order O(α2
S)

and it therefore affects the computation of the QCD radiative corrections
starting at the NNLO+NNLL accuracy.



Chapter 6

Heavy-quark pair production

We consider the inclusive production of a pair of heavy quarks (Q) in hadron-
hadron collisions. The bulk of the cross section is produced in the kinemati-
cal region where the transverse momentum qT of the pair is smaller than the
mass m of the heavy quark. In the following we are interested in the small-qT
region, namely, the region where qT ≪ m (including the limit qT → 0). From
the phenomenological point of view, the most relevant process is the produc-
tion of a pair of top-antitop quarks, because of its topical importance in the
context of both Standard Model (SM) and beyond-SM physics. The theo-
retical efforts for obtaining precise predictions for tt̄ production at hadron
colliders started almost three decades ago with the calculation of the NLO
QCD corrections to this process [109–111]. Recently the calculation of the
next-to-next-to-leading order (NNLO) QCD corrections to the inclusive tt̄
cross section was completed [112–115], and soft gluon effects have been in-
cluded [116]. Besides the total cross section, the differential distributions
are of a great importance for precision studies, and the qT spectrum of the
tt̄ pair is one important example. First measurements of the tt̄ transverse-
momentum distribution based on the

√
s = 7 data sample at the LHC have

recently been presented [117, 118].

The all-order resummation for the heavy-quark process has been discussed
only very recently by H. X. Zhu et al. in Refs. [62, 63]. The analysis of
Refs. [62, 63] is limited to the study of the qT cross section after integration
over the azimuthal angles of the produced heavy quarks. In this chapter
we summarise the results of our independent study of transverse-momentum
resummation forQQ̄ production [119]. We present our all-order resummation
formalism for QQ̄ production, and we explicitly perform resummation up

93



CHAPTER 6. HEAVY-QUARK PAIR PRODUCTION 94

to the next-to-next-to-leading lofarithmic (NNLL) level, by including the
explicit control of all the contributions up to the next-to-leading order (NLO)
in the perturbative expansion. Our formalism and results are valid at the
fully-differential level with respect to the kinematics of the produced heavy
quarks. In particular, we consider the explicit dependence on the azimuthal
angles of the heavy quarks and we have full control, at the resummed level,
of the ensuing azimuthal correlations in the small-qT region.

In the previous chapter we have presented the (process-independent)
structure of the transverse-momentum resummation for a general class of
hard-scattering processes in which the produced high-mass system F in the
final state is formed by a set of colourless particles. The QQ̄ production
process definitely belongs to a different class of processes, since the produced
final-state heavy quarks carry colour charge and, therefore, they act as ad-
ditional source of QCD radiation. The qT of the QQ̄ pair depends on initial-
state radiation, on final-state radiation and on quantum (and colour flow) in-
terferences between radiation from the initial and final states. These physical
differences between QQ̄ production and the production of a colourless system
F lead to very relevant technical and conceptual complications in the context
of transverse-momentum resummation for QQ̄ production. An important is-
sue regards the presence of possible contributions from factorization-breaking
effects of collinear radiation [120–123]. Other complications, which already
arise in the context of threshold resummation for the QQ̄ total cross sec-
tion [40, 53, 124–126], regard the effect of non-abelian colour correlations
produced by initial-state and final-state interferences. Additional important
complications and effects, which are specific of transverse-momentum resum-
mation, regard the azimuthal-angle distribution of the QQ̄ pair. In the case
of the DY process, qT resummation has no effect on the azimuthal correla-
tion between the produced leptons, since the qT broadening of the lepton
pair is entirely due to QCD radiation from the initial-state (qq̄) partons. In
contrast, the qT of the QQ̄ pair is also due to radiation from Q and Q̄, and
this leads to qT-dependent azimuthal correlations.

6.1 The QQ̄ transverse-momentum cross sec-

tion at NLO

We consider the production of two heavy quarks Q, Q̄ of measured momenta
pµ3 , pµ4 and invariant mass m2

3 = p23, m2
4 = p24, from the collisions of two
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hadrons h1, h2 of momenta P µ
1 , P

µ
2 ,

h1(P1) + h2(P2) → Q(p3) + Q̄(p4) +X , (6.1)

with the associated production of QCD radiation X . If we consider the
QQ̄ pair, the total momentum qµ = (pµ3 + pµ4) is measured and with it the
invariant mass q2 = M2, the transverse-momentum q⊥ and the rapidity y in
the centre-of-mass frame of the hadronic collision. In addition, the momenta
pµ3 and pµ4 determine two angular variables Ω of the heavy-quark pair. With
this notation the two sets of variables (P µ

1 , P
µ
2 , p

µ
3 , p

µ
4) and (q⊥, y,M,Ω) are

equivalent and Eq. (6.1) can be written as

h1(P1) + h2(P2) → QQ̄(q⊥, y,M,Ω) +X . (6.2)

We are using the same notation of Section 5.1 (cfr. Eq. (6.2) with Eq. (5.1)),
with the composite final-state colourless system F replaced by the heavy-
quark pair, so that we can easily refer to the results of the previous Chapter
and reuse them with the formal replacement F → QQ̄. We use the same kine-
matical variables, with ŝ and ŷ defined in Eq. (5.4) and the scaling variables
x1, x2 and z1, z2 defined in Eqs. (5.2) and (5.2), respectively. The Born-level
momenta (pµ1 , p

µ
2 , p

µ
3 , p

µ
4), with pµ1 = x1P

µ
1 and pµ2 = x2P

µ
2 , are completely de-

termined, in the partonic center-of-mass frame, by the set of variables (M,Ω)
and the same is true for the Lorentz scalars pi ·pj, with i, j = 1, . . . 4. Finally
p23 = m2

3 and p24 = m2
4 (with m2

3 ∼ m2
4) are the invariant masses of the heavy

quarks.

We want to calculate the fully-differential cross section

dσh1h2→QQ̄+X(s;q⊥,M, y,Ω)

d2q⊥ dM2 dy dΩ
=

1

s

∑

a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

× fa1/h1
(x1/z1, µ

2
F ) fa2/h2

(x2/z2, µ
2
F )

dσ̂a1a2→QQ̄+X(q⊥, z1, z2;M,Ω;µF )

d2q⊥ dz1 dz2 dΩ
,

(6.3)

in the kinematical region qT ≪ m2
3, m

2
4. To this purpose, we need to calcu-

late the logarithmically enhanced contribution to the partonic cross section
dσ̂a1a2→QQ̄+X and to possibly resum them to all orders. The QCD radiative
corrections to the cross section of Eq. (5.6), due to the initial-state par-
tons a1, a2, contribute to Eq. (6.3) as well, but in addition we must include
the QCD radiation from the QQ̄ pair. If we calculate the NLO enhanced
contributions in the vanishing-qT limit we find a structure similar to that
of Eq. (5.9), where the probability W

dy(1)
cc̄;a1a2 is replaced by a more general
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single-emission probability W
(1)

cc̄;a1a2;QQ̄
. The heavy quarks are massive QCD

emitters and therefore the additional radiation does not produce poles nor
singular terms in the collinear limit. The hard-collinear singular terms at
z1 < 1 or z2 < 1, i.e. the second and third lines of Eq. (5.11), are not affected
by the replacement F → QQ̄ and the additional contributions comes from
the near-threshold region (z1 = z2 = 1). In other terms the single-emission
probability reads:

W
(1)
cc̄;a1a2(q⊥, z1, z2;M,Ω;µF ) = W

dy(1)
cc̄;a1a2(q

2
T, z1, z2;M ;µF )

+W
(1)
hq (q⊥;M,Ω) δ(1− z1) δ(1− z2) δca1δc̄a2 . (6.4)

It follows that the same prescriptions discussed in Chapter 5 to organise
the hard-collinear singular terms are still valid: the natural choice for the
factorisation scale is µ2

F = b20/b
2 while the non-soft non-logarithmic terms

are controlled by the same universal collinear functions Cab(z;αS) found for
DY-like production.

The function W
(1)
hq (q⊥) in Eq. (6.4) includes the effects of large-angle

soft-gluon exchanges between the four hard partons. Non-collinear terms
appear starting with two hard partons in the matrix elements and they entail
colour-correlation effects due to quantum-interference, at the level of the
squared amplitude. When up to three partons are present at the Born level,
these effects cancel out due to colour conservation (at least in the singular
contribution) so that the resulting colour structure simplifies into the flavour
coefficient Cc and γc of the hard partons. This is the case of the processes
treated in Chapters 3 and 5: the fixed-order results and the resummation
formulae fulfil a scalar factorisation. When four partons are involved, the
colour flow is more complicated and the colour algebra does not factorise
into diagonal terms, so that the final result is a sum over the colour states
of the LO amplitude. In Chapter 4 we have presented our NLO result for
the one-particle inclusive cross section in a way that allows to keep colour
correlations under control, by working in the abstract colour space defined in
Chapter 2. Along the same lines, we define the four colour charges T1, T2,
T3, T4 associated to the partons c (and a1), c̄ (and a2), Q, Q̄ respectively.
We promote the multiloop amplitude Mcc̄→F and the hard-virtual amplitude
M̃cc̄→F of Section 5.3 to colour-space amplitudes |Mcc̄→QQ̄〉 and |M̃cc̄→QQ̄〉,
with perturbative expansions defined as in Eq. (5.45), and the real-emission
probability Wcc̄;a1a2(αS) to the colour-space operator

Wcc̄;a1a2(αS) =
∞∑

n=1

(αS

π

)n
W

(n)
cc̄;a1a2 . (6.5)
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The O(αS) radiative corrections are treated as in Section (4.1), with
QCD matrix elements for single emission replaced by the eikonal factor in
colour space projected on Born-level matrix elements. The amplitude is then
squared and the result can be organised as the sum of three terms. One
term is associated to parton a1, one term to parton a2 and one term to the
large-angle colour flow, according to the eikonal factor squared:

−
4∑

i,j=1

pi · pj
(pi · k)(pj · k)

Ti ·Tj =
2 p1 · p2

(p1 + p2) · k

(
T2

1

p1 · k
+

T2
2

p2 · k

)

− |Jhq(k)|2 , (6.6)

where kµ is the momentum of the soft-gluon. The first two terms account for
radiation that is soft and collinear to the two initial-state partons and they
are diagonal in colour space (proportional to the Casimir T2

1 = T2
2 = Cc). If

we improve their eikonal spectrum with the full ǫ-dependent Altarelli-Parisi
splitting functions of Eq. (5.12) and we integrate over the available phase-
space, we get exactly the radiative corrections presented in Section 5.1. The
third term describes large-angle soft-gluon exchanges between the four hard
partons and therefore it is not diagonal in colour space. It is proportional to
the projection of the colour-space operator

|Jhq(k)|2 =
∑

j=3,4

m2
j

(pj · k)2
T2

j +
2 p3 · p4

p3 · k p4 · k
T3 ·T4

+
∑

i=1,2
j=3,4

2

pi · k

(
pi · pj
pj · k

− p1 · p2
(p1 + p2) · k

)
Ti ·Tj (6.7)

on the Born-level amplitude |M(0)

cc̄→QQ̄
〉. The expression in Eq. (6.7) satisfies

two important consistency requirements. First of all it vanishes if the colour
charges of the heavy quarks are switched off, i.e. if T3 = T4 = 0: in this case
the final-state system is colourless and the scattering belongs to the class of
processes treated in the previous chapter. Secondly, each colour-interference
term is finite in the collinear limits kµ ∼ λpµi and it diverges only in the soft
limit k → 0, in agreement with the physical argument that heavy quarks,
being massive, do not contribute with additional singular terms of collinear
origin. This also implies that the phase-space integral of the third term
produces at most single-logarithmic terms, associated to additional IR (soft)
1/ǫ poles in the real and virtual corrections (cfr. Eqs. (6.13) and Eqs.(6.12)
).

We can write the singular O(αS) radiative corrections in a form similar to

that of Eq. (4.17): the single-emission probabilityW
(1)
cc̄;a1a2 of Eq. (6.4) is equal
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to the projection of W
(1)
cc̄;a1a2 on the Born-level colour amplitude |M(0)

cc̄→QQ̄
〉

and the hard-virtual term H
F (1)
c of Eq. (5.9) is replaced by the IR-finite

interference term
(
〈M(0)

cc̄→QQ̄
|M̃(1)

cc̄→QQ̄
〉+ c.c.

)
. The singular partonic cross

section at NLO in q⊥-space reads :

dσ̂sing

a1a2→QQ̄+X

d2q⊥ dz1 dz2 dΩ
=

M2

π

∑

c=q,q̄,g

[dσ
(0)

cc̄,QQ̄
]
{
δ(q2T) δ(1− z1) δ(1− z2) δca1δc̄a2

+
αS

2π

〈M(0)

cc̄→QQ̄
|M̃(1)

cc̄→QQ̄
〉+ c.c.

|M(0)

cc̄→QQ̄
|2

δ(q2T) δ(1− z1) δ(1− z2) δca1δc̄a2

+
αS

π

〈M(0)

cc̄→QQ̄
|W(1)

cc̄;a1a2(q⊥, z1, z2;M,Ω;µF )|M(0)

cc̄→QQ̄
〉

|M(0)

cc̄→QQ̄
|2

+O(α2
S)

}
. (6.8)

The O(αS) coefficient of the hard-virtual amplitude in the second line of
Eq. (6.8) is

|M̃(1)

cc̄→QQ̄
〉 = |M(1)

cc̄→QQ̄
〉 − Ĩ(1)c (ǫ,M,Ω;µR) |M(0)

cc̄→QQ̄
〉 , (6.9)

with subtraction operator

Ĩ(1)c (ǫ,M,Ω;µR) = Ĩdy(1)c (ǫ,M ;µR) + Ĩ
(1)
hq(ǫ,M,Ω;µR) , (6.10)

and the single-emission probability in the third line of Eq. (6.8) is

W
(1)
cc̄;a1a2(q⊥, z1, z2;M,Ω;µF ) = W

dy(1)
cc̄;a1a2(q

2
T, z1, z2;M ;µF )

+W
(1)
hq (q⊥;M,Ω) δ(1− z1) δ(1− z2) δca1δc̄a2 . (6.11)

The infrared corrections due to DY-like collinear emission from the initial-
state partons a1, a2 are included in the subtraction operator Ĩdyc (ǫ) and in

the probability W
dy(1)
cc̄;a1a2(q

2
T, z1, z2), defined in Chapter (5). The colour-space

operators Ĩ
(1)
hq(ǫ) in Eqs. (6.9), (6.10) andW

(1)
hq (q⊥) in Eq. (6.11), that account

for the additional large-angle soft-gluon emissions due to the heavy quarks,
are equal to

Ĩ
(1)
hq(ǫ,M,Ω;µ2

R) = −1

2

(
M2

µ2
R

)−ǫ{
−4

ǫ
Γ

(1)
T (M,Ω) + F(1)(M,Ω)

}
, (6.12)

W
(1)
hq (q⊥;M,Ω) =

(
1

q2T

)

+

[
Γ

(1)
T (M,Ω) + Γ

(1) †
T (M,Ω)

]

+
1

q2T

[
R(1)(q̂⊥;M,Ω)− 〈R(1)〉(M,Ω)

]
, (6.13)
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where the three operators Γ
(1)
T , F(1), R(1), whose explicit expressions are given

in Section 6.6, are determined by the phase-space integral of the expression in
Eq. (6.7) and therefore vanish if T3 = T4 = 0. They are all defined at Born-
level kinematics (M,Ω) ↔ (pµ1 , p

µ
2 , p

µ
3 , p

µ
4). The operator R(1) additionally

depends on the azimuthal degree-of-freedom q̂⊥ of the transverse momentum
q⊥ and the operator 〈R(1)〉, defined in Eq. (6.16) in terms of Γ

(1)
T and F(1), is

its azimuthal average over q̂⊥. It follows that the difference [R
(1)(q̂⊥)−〈R(1)〉]

is zero at q⊥ = 0 and the second line in the r.h.s. of Eq. (6.13) is integrable
in qT in the same limit.

The operator Γ
(1)
T , defined in Eq. (6.36), controls the soft poles of the

subtraction operator Ĩ
(1)
hq and the ensuing single-logarithmic term (the plus-

distribution of 1/q2T) of the operator W
(1)
hq . The 1/ǫ poles determined by

the expression in Eq. (6.36) are in agreement with the one-loop singular
behaviour of QCD amplitudes with massive partons [127,128]: the structure
of the real poles is equal in magnitude and opposite in sign to the structure
of virtual poles, so that the hard-virtual amplitude |M̃(1)

cc̄→QQ̄
〉 in Eq. (6.9) is

explicitly finite.

The operators F(1) andR(1), defined in Eqs. (6.38) and (6.43) respectively,
both control finite non-logarithmic terms. The integral of Eq. (6.7) gives
R(1)(q̂⊥)/q

2
T, that we can decompose as

1

(q2T)
1+ǫ

R(1)(q̂⊥; ǫ) =
1

(q2T)
1+ǫ

〈R(1)(ǫ)〉+ 1

q2T

[
R(1)(q̂⊥)− 〈R(1)〉

]
. (6.14)

The second term in the r.h.s. of Eq. (6.14) is finite, it can be calculated at

ǫ = 0 and it directly corresponds to the 1/q2T term of W
(1)
hq (q⊥), in Eq. (6.13).

The first term in the r.h.s. of Eq. (6.14) has a pole at qT = 0 and must be
regularised in d = 4− 2ǫ dimensions. From the identities

1

(q2T)
1+ǫ

= −1

ǫ
δ(q2T) +

(
1

q2T

)

+

+O(ǫ) , (6.15)

〈R(1)(ǫ)〉 =
[
Γ

(1)
T + Γ

(1) †
T

]
− ǫ

4

[
F(1) + F(1) †

]
+O(ǫ2) , (6.16)

we obtain the [1/q2T]+ term of W
(1)
hq (q⊥) in Eq. (6.13) and Ĩ

(1)
hq in Eq. (6.12).

The operator F(1) is thus the coefficient of the finite δ(q2T) terms coming from
Eq. (6.14) and it naturally belongs to the hard-virtual amplitude. In defining
the hard-virtual amplitude, we subtract the soft-virtual amplitude from the
(total) virtual amplitude and in doing so we rely on unitarity: the virtual
corrections in the soft limit are equal in magnitude and opposite in sign to
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the δ(q2T) contribution of the real corrections. The second term in Eq. (6.14)
is transformed to a constant in b-space, but it does not belong to the δ(q2T)
terms and therefore it must be included in the real-emission probability of
Eq. (6.13), together with the [1/q2T]+ term.

The operators Ĩ
(1)
hq and W

(1)
hq (q⊥) provide all the information that we need

in order to extend the formula in Eq. (5.23), to include the production of a
QQ̄ pair. First we Fourier-transform the partonic cross section in Eq. (6.8)
to b-space, to get a factorised result, ready to be resummed to all orders.
The first two lines of Eq. (6.8) are constant in the conjugate space and the

third line requires the transform of Eq. (6.11), i.e. of W
dy(1)
cc̄;a1a2(q

2
T, z1, z2) and

of W
hq(1)
cc̄;a1a2(q⊥). The former leads to the results of the previous chapter,

with the definition of the Sc and Cab functions to describe collinear soft and
hard radiation from the initial-state partons and the definition of a running
factorisation scale µ2

F = b20/b
2. As regards W

hq(1)
cc̄;a1a2(q⊥), we can transform

the [1/q2T]+ term in Eq. (6.13) with the approximation in Eq. (5.20) to get

−
∫ M2

b2
0
/b2

dk2
T

k2
T

[
Γ

(1)
T (M,Ω) + Γ

(1) †
T (M,Ω)

]
(6.17)

while the 1/q2T term in Eq. (6.13) must be transformed exactly and gives
∫

d2b

(2π)2
eib·q⊥ D(1)(b̂;M,Ω) +O(q⊥) . (6.18)

The explicit expression of the operator D(1) is given in Eq. (6.46). It depends
on the azimuthal degree-of-freedom b̂ of the impact-parameter b and has zero
azimuthal average (with respect to b̂).

In order to include the contributions of Eqs. (6.12), (6.17), (6.18) in the
b-space formula of the singular cross section we proceed on the same lines of
Chapter 4: we replace the hard-virtual term HF

c of Eq. (5.23) with a factor
(H∆)c acting in colour space, that entails colour interferences between a soft-

real radiative factor∆ and the hard-virtual amplitude |M̃qq̄→QQ̄〉. Explicitly:

(H∆)q =
〈M̃qq̄→QQ̄| ∆(b;M,Ω) |M̃qq̄→QQ̄〉

α2
S(M

2) |M(0)

qq̄→QQ̄
|2

, (6.19)

for processes initiated at the Born-level by qq̄ annihilation and

(H∆)µ1ν1,µ2ν2
g = dµ1

µ′

1

dν1ν′
1

dµ2

µ′

2

dν2ν′
2

〈M̃µ′

1
µ′

2

gg→QQ̄
|∆(b;M,Ω) |M̃ν′

1
ν′
2

gg→QQ̄
〉

α2
S(M

2) |M(0)

gg→QQ̄
|2

, (6.20)
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for processes initiated by gluon fusion. The Ĩ
(1)
hq operator of Eq. (6.12) enters

into the definition of the NLO hard-virtual amplitude, according to Eqs.(6.9)
and (6.10), whereas the expressions in Eqs. (6.17) and (6.18) define the ra-
diative factor ∆ at order O(αS):

∆(f.o.)(b;M,Ω) = 1− αS

π

∫ M2

b2
0
/b2

dk2
T

k2
T

[
Γ

(1)
T (M,Ω) + Γ

(1) †
T (M,Ω)

]

+
αS

π
D(1)(b̂;M,Ω) +O(α2

S) . (6.21)

The formula in Eq. (5.23), together with the functions Cab, Gab, Sc defined
in Chapter 5 and with the hard-virtual amplitude and the soft-real radiative
factor defined in this section, gives the NLO singular contribution to the
fully-differential cross section of the hadronic scattering in Eq. (6.2). In the
following we propose an all-order resummed formula for the hadronic cross
section, by combining the BCMN approach to multiparton threshold resum-
mation (employed in Chapter 4) with the BCDG approach to transverse-
momentum resummation (presented in Chapter 5).

6.2 All-order resummation

In Chapter 4 we studied a scattering process where four hard partons are
present at the Born-level and we discussed the extension of the soft-gluon
resummation formulae for the DY and DIS processes presented in Chapter 3,
where two hard partons are present at the Born level. According to the
BCMN formula, the collinear factors ∆c,N of Eq. (3.28) and Jc,N of Eq. (3.47),
defined for the DY and DIS processes, resum all the LL terms that appear
in the cross sections of multiparton processes. Already at the NLL, however,
the additional colour-space radiative factor ∆

(int)
N of Eq.(4.33) is required

to resum logarithmic terms associated to non-collinear soft-gluon exchanges
between the hard partons. The result is the all-order resummation formula
in Eq. (4.30).

Along the same lines, the BCDG formula of Eq. (5.23) directly resums
all the LL terms of the cross section (6.3) via the Sudakov form factor Sc of
Eq. (5.34), but it misses some NLL terms, specifically the ones associated to
non-collinear soft-gluon exchanges between the four hard partons, being de-
signed to resum pure collinear effects in DY-like processes. To include the ad-
ditional logarithmic terms we have introduced the colour-space factor (H∆)c
of Eqs. (6.19) and (6.20), that, in analogy to the term 〈MH|∆(int)

N |MH〉 in
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Eq. (4.30), reproduces colour interferences between real and virtual correc-
tions. To resum the logarithmic terms we have to promote the fixed-order
definition of ∆ in Eq. (6.21) to an expression formally valid to all orders.
For simplicity we can first consider the azimuthal average of ∆ over b̂: being
〈D(1)〉 = 0 we can write

〈∆〉(b;M,Ω) = V †(b;M,Ω) V(b;M,Ω) , (6.22)

where

V(b;M,Ω) = exp

{
−
∫ M2

b2
0
/b2

dk2
T

k2
T

αS(k
2
T)

π
Γ

(1)
T (M,Ω)

+O(αS ln(M
2/b2))

}
. (6.23)

The expression in Eq. (6.23) resums the NLL terms (i.e. the LL terms due to
∆), thanks to the choice µ2 = k2

T for the scale of the αS coupling. To reach

higher logarithmic accuracy we replace Γ
(1)
T with the all-order expression

αS

π
Γ

(1)
T (M,Ω) → ΓT(M,Ω;αS) , (6.24)

where ΓT(αS) is a colour-space matrix and it has a perturbative series in
αS that plays the same role as Γ in Eq. (4.34). By comparing Eq. (6.22)
with Eq. (4.33), it appears evident that the colour operators ∆N and 〈∆〉(b)
have the same function: they both describe large-angle QCD emission from
the scale (M and pT ) typical of the hard process to a soft scale (1/b and
pT/N) associated to a specific constraint (on qT and on z). They depend on
the full Born-level kinematics, i.e. on the hard scale and on variables (ω)
or r), and additionally on the soft scale. The azimuthal degree-of-freedom
of q⊥ has indeed been integrated out, in defining 〈∆〉. The q⊥-distribution
(6.3) is however constrained by q̂⊥ as well and the all-order expression of the
colour-space operator ∆(b) has a richer structure than 〈∆〉(b): it combines
the resummed expression in Eq. (6.22) with the additional non-logarithmic
b̂-dependent contributions controlled by the colour-space matrix D(b̂). The
all-order expression of the operator ∆ is given in Eq. (6.28).

We propose the following all-order resummation formula for the singular
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part of the hadronic cross section (6.3):

dσh1h2→QQ̄+X(s;q⊥,M, y,Ω)

d2q⊥ dM2 dy dΩ
=

M2

s

∑

c=q,q̄,g

[dσ
(0)
cc̄,F ]

∫
d2b

(2π)2
eib·q⊥Sc(M, b)

×
∑

a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

[(H∆)C1C2]cc̄;a1a2 fa1/h1

(
x1

z1
,
b20
b2

)
fa2/h2

(
x2

z2
,
b20
b2

)
,

(6.25)

where the simbolic factor [(H∆)C1C2], that replaces the factor
[
HFC1C2

]

of Eq. (5.23), is defined as

[(H∆)C1C2]qq̄;a1a2 = (H∆)q Cca1(z1;αS(b
2
0/b

2))Cc̄a2(z2;αS(b
2
0/b

2)) ,
(6.26)

in the qq̄ channel and

[(H∆)C1C2]gg;a1a2 = (H∆)g;µ1ν1,µ2ν2

× Cµ1ν1
ga1 (z1; p1, p2,b;αS(b

2
0/b

2))Cµ2ν2
ga2 (z2; p1, p2,b;αS(b

2
0/b

2)) , (6.27)

in the gg channel. Eqs. (6.26) and (6.27) are the analogous of Eqs. (5.30)
and (5.54) respectively, with the factor HF

c replaced by the symbolic factor
(H∆)c.

The coefficient functions Cab, the gluonic tensors Cµν
ga and the Sudakov

form factors Sc are defined in Chapter 5. The operator (H∆)q is defined in
Eqs. (6.19) and (6.20). The all-order form of ∆ is

∆(b;M,Ω) = V †(b;M,Ω) D(b̂;M,Ω;αS(b
2
0/b

2)) V(b;M,Ω) , (6.28)

where

V(b;M,Ω) = P̄q exp

{
−
∫ M2

b2
0
/b2

dq2

q2
ΓT(M,Ω;αS(q

2))

}
. (6.29)

The soft-gluon anomalous dimension ΓT(M,Ω;αS) is a colour-space matrix,
and the operator P̄q denotes inverse q-ordering in the expansion of the expo-
nential matrix. V † in Eq. (6.28) is obtained from Eq. (6.29) by replacing P̄q

with Pq, the operator acting in the opposite order. The anomalous-dimension

matrix ΓT(αS) and the azimuthal-correlation matrix D(b̂;αS) are indepen-
dent of the details of the hard-scattering process. They are perturbative
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h2

h1
fa/h1

fb/h2

Mcc̄→QQ̄

S
1/2
c

S
1/2
c

Cc̄b

Cca

∆

Q̄

Q

Figure 6.1: Pictorial representation of the resummation formula in Eq. (6.25)
for QQ̄ production. The content is the same as in the BCDG formula
(Fig. 5.1) with additional large-angle soft-gluon radiation factorised as in
the BCMN formula (Fig. 4.1).

series in αS,

ΓT(M,Ω;αS) =
αS

π
Γ

(1)
T (M,Ω) +

∞∑

n=2

(αS

π

)n
Γ

(n)
T (M,Ω) , (6.30)

D(b̂;M,Ω;αS) = 1 +
∞∑

n=1

(αS

π

)n
D(n)(b̂;M,Ω) , (6.31)

with first-order terms Γ
(1)
T and D(1) given in Eqs. (6.36) and (6.46).

The all-order expression of V in Eq. (6.23) follows from Eqs. (6.23) and
(6.24), while the definition of ∆ in Eq. (6.28) is an extension of 〈∆〉 in
Eq. (6.22) to include the azimuthal-correlation matrix D. The scale of the
coupling for D is set to b20/b

2, in Eq. (6.28): the colour flow described by this
operator is due to gluon exchanges at the soft scale and specifically to soft-
gluon effects not controlled by the anomalous dimension. The coefficients
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of the perturbative expansion of D in powers of αS(b
2
0/b

2) do not contain
logarithmic enhancements in ln(M2b2). However, ln(M2b2) terms are then
produced by reexpressing αS(b

2
0/b

2) in terms of αS(M
2). Therefore, when

transforming back to qT space, D contributes as well to logarithmically en-
hanced terms (see e.g. the last term on the r.h.s. of Eq. (6.14)).

The expression in Eq. (6.28), with D between V † and V, accounts for
the impact of azimuthal-correlated emissions on the general structure of the
colour-correlation terms. At variance with the cross section for one-particle
inclusive production, where only the total energy-fraction z is triggered at
the partonic level, we are now able to keep trace not only of the colour cor-
relations but also of the azimuthal correlations and to describe the interplay
between the four hard partons in terms of the scale qT and of the azimuth
q̂⊥. The [(H∆)] factor has the structure

〈M̃(αS(M
2))| V †(b;M) D(b̂, αS(b

2
0/b

2)) V(b;M) |M̃(αS(M
2))〉 (6.32)

where the amplitude |M̃(αS(M
2))〉 describes the QCD interactions at the

hard scale M , the matrix D(b̂, αS(b
2
0/b

2)) the interactions at the soft scale
1/b and the matrix V †(b;M) connects the two different regimes, resumming
the ensuing large logarithmic terms.

6.3 Azimuthally-averaged cross section

Starting from the q⊥-distribution in Eq. (6.25), we can consider the average
over the azimuthal degree-of-freedom (q̂⊥ ↔ φ(q̂⊥)) to define

〈 dσh1h2→QQ̄+X

d2q⊥ dM2 dy dΩ
〉 =

∫ 2π

0

dφ(q⊥)

2π

dσh1h2→QQ̄+X

d2q⊥ dM2 dy dΩ

=
1

π

dσh1h2→QQ̄+X(s; qT,M, y,Ω)

dq2T dM2 dy dΩ
. (6.33)

The resummation formula for this cross section is obtained from Eq. (6.25)
by replacing the symbolic factor [(H∆)C1C2] with its azimuthal average
over (b̂ ↔ φ(b̂)).

In the qq̄ channel, this factor is defined by Eq. (6.26), with the colour-
space matrix ∆ being the only term dependent on b̂. The azimuthal average
of ∆ is the radiative factor in Eq. (6.22), completely determined by the
soft-gluon anomalous-dimension matrix ΓT. The azimuthally-averaged cross
section in the qq̄ channel is thus obtained with D ≡ 1.
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For processes initiated by gluon-fusion, the factor in Eq. (6.27) features
a more complicated dependence over b̂: the gluonic tensors Cµν

ga depends on
the azimuth of the transverse momentum b, together with ∆. From the
explicit expression of Cµν

ga , given in Eq. (5.57), we can distinguish between
two different contributions: one controlled by the coefficient functions Cab,
the other by the coefficient functions Gab. The former reduces to an average
of∆ and yields a result analogous to that of the qq̄ channel, with the effective
prescription D ≡ 1. The latter contains the azimuthal average of the tensor
(and matrix in colour space)

Dµ1ν1(p1, p2;b) D(b̂;M,Ω;αS(b
2
0/b

2)) Dµ2ν2(p1, p2;b) . (6.34)

The calculation of the azimuthally averaged transverse-momentum cross
section and the resummation of the logarithmically enhanced terms has been
independently performed in Refs. [62, 63], by using SCET techniques. The
fixed-order cross section that can be extracted from their results is in com-
plete agreement with ours and the same is true for the resummed results, if
we remove the matrix D(αS) from Eq. (6.28). The resummation formula for
the gluon fusion channel demands however a careful handling: the expres-
sion in Eq. (6.34) entails azimuthal correlations between initial-state collinear
emission and large-angle soft-gluon emission and gives rise to a contribution,
specific to processes initiated by gluon fusion, that can not be simply obtained
by setting D ≡ 1. In turn, the presence of azimuthal correlations implies the
presence of spin correlations [64] and we should not forget that the terms in
Eq. (6.34) are matrices in colour space and thus affect the colour flow. A
single operator (Lorentz tensor and colour-space matrix) is then responsible
for azimuth, spin (helicity) and colour correlations at the same time.

This is of crucial importance in order to understand the structure of
the large logarithmic terms: even the azimuthally-averaged cross section
is affected by the form of the colour-space matrix D(αS), in the gg chan-
nel, thanks to a convolution with the Altarelli-Parisi splitting probabilities
P̂ µν
ga of the initial-state gluons (the Cµν

ga tensors in b-space). It follows that
our fixed-order calculation of the q⊥-distribution is essential to deriving the
complete transverse-momentum resummation formula, while the simpler qT-
distribution does not include all the relevant information (D(αS)) and its
ensuing contribution. As observed in Section 5.4, the term Gga(αS)Ggb(αS)
(i.e. the coefficient of the tensor in Eq. (6.34)) starts at order O(α2

S) and it
enters the qT-distribution at the NNLO+NNLL accuracy. The same is true
for the colour-space matrix D(αS): it does not affect the qT-distribution up
to the NLL accuracy and its first-order coefficient D(1) controls NNLL terms.
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6.4 Extension to NNLL accuracy

Our resummation formula is valid to arbitrary logarithmic accuracy and with
the O(αS) coefficients in Section 6.6 it can be explicitly worked out up to
NLL accuracy (see the end of Section 4.3). In addition we can calculate
some contributions to higher accuracy: the diagonal structure inherited from
the BCDG formula of Eq. (5.23) is known up to NNLL accuracy (for a
review see [102]) and the colour-space structure (H∆)c is organised in a
way that makes the extension to the NNLL accuracy simple. An entire class
of NNLL terms is produced by interferences between NLL terms in the soft-
real radiative factor ∆ and NLO corrections to the hard-virtual amplitude
|M̃〉. These contributions are controlled by products of theO(αS) coefficients
provided in Section 6.6.

The complete determination of the NNLL terms require the explicit in-
clusion of higher-order terms in the anomalous dimension ΓT, in the sub-
traction operator Ihq and in the azimuthal-correlation matrix D. We remind
that the phase-space region of non-collinear soft-gluon emission in the low-qT
limit corresponds to the near-threshold region (z1 = z2 = 1), as discussed
in the comments to Eq. (6.4). It follows that the second-order coefficient

Γ
(2)
T can be extracted from the anomalous dimension matrix that controls

the threshold logarithms of the QQ̄ invariant mass distribution [126], calcu-
lated in [129]. The same argument is employed by the authors of [62, 63]
to calculate the soft-functions of their transverse-momentum resummation
formula for tt̄ production, derived in SCET. The matrix Γ

(2)
T also controls

the two-loop divergences of I
(2)
hq , together with the first-order coefficients Γ

(1)
T

and F(1). The finite terms of I
(2)
hq are instead determined by a second-order

coefficient F(2), currently unknown.

The colour-space matrices D(2)(b̂;M,Ω) and F(2)(M,Ω) must be explic-
itly calculated and can not be derived from known results. They can be
inferred from the singular contribution of the O(α2

S) radiative corrections to
the QQ̄ transverse-momentum cross section. This fixed-order result is to be
compared with our resummation formula, expanded and truncated at NNLO:
the logarithmic structure of the two expressions should agree and from the
constant terms of the fixed-order calculation we would be able able to de-
termine the D(2) and F(2) matrices. We stress that, although these terms
are free of explicit dependence on ln(M2b2), they contribute at NNLL accu-
racy, through the interference with LL terms resummed by the Sudakov form
factors Sc (the ones controlled by A

(1)
c ).
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To conclude, we note that the calculation of the O(α2
S) radiative correc-

tions to the q⊥-distribution is rather complicated, even in the singular limit
q⊥ → 0, due to the presence of both colour and azimuthal correlations. The
fixed-order calculation of the azimuthally-averaged cross section, i.e. of the
qT-distribution, is in contrast definitely simpler, but in this cross section all
the information on the azimuthal dependence is lost. However, if we restrict
ourselves to the azimuthally-averaged resummed cross section, the second-
order coefficient D(2) first enters at NNNLL accuracy. At NNLL accuracy,
the relevant information to include the effect of azimuthal correlations is com-
pletely included in the first-order coefficient D(1), that we have calculated.
The colour-space matrix F(2) is, therefore, the only missing ingredient for
the explicit determination of our resummation formula at full NNLO+NNLL
accuracy.

6.5 Application to qT subtraction

The results presented in this Chapter have implications not only for the
resummation of the logarithmically enhanced contributions but also for a
possible fully differential computation at NLO and NNLO for heavy-quark
production and related processes. The problem of performing (fully) differ-
ential QCD computation is well known and definitely non-trivial. At NNLO,
besides the IR divergent two-loop and one-loop squared contributions, one
has to consider the real-virtual corrections with one unresolved parton and
the tree-level contributions. To be able to implement these amplitudes into
a parton level Monte Carlo program one has to organize the various con-
tributions in a way to explicitly cancel the IR singularities, such that the
calculation can be eventually carried out in four dimensions. Various meth-
ods have been proposed to achieve this goal [130–134]. The qT subtraction
formalism [133] is a method that is fully developed to work with the pro-
duction of colourless final states. According to this method the NNLO cross
section for the production of a colourless high mass system F can be written
as

dσF
NNLO = HF

NNLO ⊗ dσF
LO +

[
dσF+jet

NLO − dσCT
NLO

]
, (6.35)

where dσF+jet
NLO is the cross section for the inclusive production of the sys-

tem F plus one jet at NLO accuracy, and can be evaluated, for example,
with the dipole subtraction formalism [66]. When the transverse momentum
qT of the colourless system F is non-vanishing, dσF+jet

NLO is the sole contribu-
tion to the NNLO cross section. The IR subtraction counterterm dσCT

NLO in
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Eq. (6.35) has the purpose of cancelling the singularity developed by dσF+jet
NLO

as qT → 0. To construct the explicit form of dσCT
NLO, one can use the resumma-

tion formula (5.23) discussed in Chapter 5: when this formula is expanded
up to O(α2

S) it provides a natural candidate for the subtraction countert-
erm, since it correctly describes the small-qT behavior of the transverse-
momentum cross section, and all its coefficients are explicitly know up to
this order. The function HF

NNLO, which also compensates for the subtraction
of dσCT

NLO, corresponds to the NNLO truncation of the process-dependent
perturbative function [HFC1C2]cc̄a1a2 that controls qT resummation for the
related transverse-momentum cross section at NNLL+NNLO accuracy. As
discussed in Chapter 5, the general structure of the hard function is known up
to NNLO [92,102–106], and thus Eq. (6.35) can be numerically implemented
into a parton level event generator, once the corresponding amplitudes are
available. The qT subtraction method has been successfully applied to a va-
riety of relevant hadronic processes: single Higgs [133] and vector boson pro-
duction [135], associated WH production [136], photon pairs [137], Zγ [138],
Wγ [139] and ZZ production [140]. In its current formulation, however, the
method is developed only for the case in which F is a system of colourless
particles.

The results presented in this Chapter offer the possibility to extend the
qT subtraction method to the production of a QQ̄ pair. Since the small-qT
behavior of the QQ̄ cross section up to O(αS) is known in explicit form, by
including the δ(q2T) term (see Sections 6.1 and 6.6), the subtraction countert-
erm and the relevant hard coefficient appearing in Eq. (6.35) can be explicitly
constructed. We have implemented [141] all these ingredients in a numerical
program based on Eq. (6.35) and we have checked that we can reproduce the
numerical results produced with the general purpose NLO generatorMCFM.
The extension to NNLO is of course non-trivial and requires the computation
of the second-order coefficient F(2).

6.6 First-order coefficients of the colour op-

erators

In the following we give the explicit expressions of the four colour-space op-
erators that control our NLO results in q⊥-space and in b-space and the
resummation formula up to NLL accuracy. The dependence over the Born-
level kinematics, (M,Ω) ↔ (pµ1 , p

µ
2 , p

µ
3 , p

µ
4 ), is understood and only the even-
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tual dependence over q⊥, b is specified. The momentum pµj (j = 3, 4) of the
heavy quark is specified by the heavy-quark mass mj (p

2
j = m2

j ), rapidity yj
and transverse-momentum vector pj⊥.

The operator Γ
(1)
T is

Γ
(1)
T = −1

4

{
∑

j=3,4

T2
j (1− iπ) +

∑

i=1,2
j=3,4

Ti ·Tj ln
(2 pi · pj)2
M2m2

j

+T3 ·T4

[
1

v34
ln

1 + v34
1− v34

− 2 iπ

(
1

v34
+ 1

)]}
, (6.36)

where v34 is the relative velocity of the heavy-quark pair:

vjk =

√
1−

m2
jm

2
k

(pj · pk)2
. (6.37)

The operator F(1) is

F(1) =
∑

j=3,4

T2
j ln

m2
j + p2

j⊥

m2
j

−
∑

i=1,2
j=3,4

Ti ·Tj Li2

(
−
p2
j⊥

m2
j

)
+T3 ·T4

F34

v34
,

(6.38)

where

Fjk =
1

2
ln

1 + vjk
1− vjk

ln
(m2

j + p2
j⊥)(m

2
k + p2

k⊥)

m2
j m

2
k

− 1

4
ln2 1 + vjk

1− vjk

− 2 Li2

(
2 vjk

1 + vjk

)
+
∑

i=1,2

[
Li2

(
1−

√
1− vjk
1 + vjk

rjk,i

)

+ Li2

(
1−

√
1− vjk
1 + vjk

1

rjk,i

)
+

1

2
ln2 rjk,i

]
, (6.39)

and
rjk,i =

mk

mj

pi · pj
pi · pk

. (6.40)

In order to define R(1) andD(1), we express the azimuthal degrees-of-freedom
in q⊥-space and in b-space in terms of the unitary vectors

q̂⊥ =
q⊥√
q2
⊥

, b̂ =
b√
b2

, (6.41)
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and the projections

q̂j =
q̂⊥ · pj⊥√
m2

j + p2
j⊥

, b̂j =
b̂ · pj⊥

mj
. (6.42)

The operator R(1) is

R(1)(q̂⊥) = −1

2

{
T3 ·T4R34(q̂⊥)

+
∑

i=1,2
j=3,4

Ti ·Tj


ln (pi · pj)2

(p1 · pj)(p2 · pj)
+

2 q̂j√
1− q̂2

j

(
arctan

q̂j√
1− q̂2

j

− π

2

)


+
∑

j=3,4

T2
j

m2
j

m2
j + p2

j⊥

1

1− q̂2
j

[
1 +

q̂j√
1− q̂2

j

(
arctan

q̂j√
1− q̂2

j

− π

2

)]}
,

(6.43)

where

Rjk(q̂⊥) =
pj · pk√

(m2
j + p2

j⊥)(m
2
k + p2

k⊥)

1

(q̂2
j + q̂2

k)− 2 q̂jtjkq̂k + (t2jk − 1)

×
[

(p1 · pj)(p2 · pk)
(p1 · p2)

√
(m2

j + p2
j⊥)(m

2
k + p2

k⊥)
ln

(p1 · pj)(p2 · pk)
(p2 · pj)(p1 · pk)

+
2 (q̂jtjk − q̂k)√

1− q̂2
j

(
arctan

q̂j√
1− q̂2

j

− π

2

)
+ (j ↔ k)

]
, (6.44)

and

tjk =
pj · pk + pj⊥ · pk⊥√

(m2
j + p2

j⊥)(m
2
k + p2

k⊥)
=

(p1 · pj)(p2 · pk) + (p2 · pj)(p1 · pk)
(p1 · p2)

√
(m2

j + p2
j⊥)(m

2
k + p2

k⊥)
.

(6.45)

The azimuthal average of R(1) is 〈R(1)〉 =
[
Γ

(1)
T + Γ

(1) †
T

]
, from Eq. (6.16).

The operator D(1) can be written as the difference of an operator E(1) and
its azimuthal average 〈E(1)〉 over b̂ :

D(1)(b̂) =
1

2

[
E(1)(b̂)− 〈E(1)〉

]
=

1

2

[
E(1)(b̂)− F(1)

]
. (6.46)
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The azimuthal average of E(1) is 〈E(1)〉 = F(1). The operator E(1) is

E(1)(b̂) = T3 ·T4
E34(b̂)

v34
+
∑

j=3,4

T2
j

b̂j√
1 + b̂2

j

[
2 arcsinh(b̂j)− iπ

]

+
∑

i=1,2
j=3,4

Ti ·Tj 2 arcsinh(b̂j)
[
arcsinh(b̂j)− iπ

]
, (6.47)

where

Ejk(b̂) = sign(b̂j − b̂kγjk)
[
Lz(ẑjk, ĉjk)− Lz(b̂k, ĉjk)

]
+ (j ↔ k) , (6.48)

and

Lz(z, c) = Lξ

(
ξ(z, c), c

)
, ξ(z, c) =

(
z +

√
1 + z2

)(
z +

√
c + z2

)
,

Lξ(ξ, c) =
1

2
ln2 ξ(1 + ξ)

c+ ξ
− ln2 ξ

c+ ξ
− iπ ln

(c + ξ)(1 + ξ)

ξ

+ 2

[
Li2(−ξ)− Li2

c+ ξ

c− 1
− ln(c+ ξ) ln

1

1− c

]
, (6.49)

ẑjk = sign
[
b̂j (γjkmj −mk) + b̂k (γjkmk −mj)

]√
−ĉjk ,

ĉjk =
b̂2
j − 2 b̂jγjkb̂k + b̂2

k

γ2
jk − 1

, γjk =
1√

1− v2jk

=
pj · pk√
m2

jm
2
k

. (6.50)



Chapter 7

Conclusions

The Large Hadron Collider is exploring the interactions of the fundamental
particles at unprecedented energy scales. In order to perform precise tests of
the Standard Model and to disentangle possible (small) new physics effects,
accurate theoretical predictions are necessary. Our capability to obtain such
predictions for hard-scattering processes at hadron colliders is based on the
factorisation theorem, which allows us to write the hadronic cross section for a
hard-scattering process as a convolution of parton distribution functions, that
are extracted from global fits to experimental data, with the hard-scattering
partonic cross section, that can be computed in perturbation theory. The
possibility to organise the hard-scattering cross section as an expansion in
the QCD coupling αS allowed to perform accurate calculations up to NLO
and, for some specific processes, to the NNLO.

Fixed-order calculations, however, are reliable only if the measured energy
scales are all of the same order. Near the exclusive boundaries of the phase
space, the perturbative expansion is plagued by large logarithmic terms, of
infrared nature, which must be summed to all orders. Such resummation
is effectively performed by Monte Carlo event generators, though with very
limited logarithmic accuracy. In particular, processes initiated by multipar-
ton scatterings at tree level require a dedicated treatment. In this case the
complicated colour flow features a large-angle contribution that is irreducible,
i.e. that can not be reduced to a sum of colour-uncorrelated collinear emis-
sions from independent QCD emitters, and leads to a non-trivial pattern
of soft enhancements. This thesis dealt with a class of processes initiated
by the hard scattering of four partons at Born level: we have considered
the one-particle inclusive cross section at high-transverse energies [83] and
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heavy-quark pair production at small transverse momentum in hadronic col-
lisions [119]. These processes are particularly relevant for high-energy phe-
nomenology. As regards the production of one hadron at high transverse
momentum, previous studies [142–145] have shown that fixed-order results
significally underestimate the data (independently collected at DESY, Teva-
tron, BNL-RHIC, HERA, LEP2), so that the resummation of the large loga-
rithmic terms is crucial [82]. A better estimation of the short-distance cross
section translates to stronger constraints on universal long-distance effects,
specifically power-suppressed contributions and fragmentation functions for
the observed hadron. The production of heavy quark pair is even more rele-
vant at the LHC, given the huge amount of tt̄ pairs that have been collected
in the

√
s = 7 and 8 TeV runs at the LHC, and the even higher number

of tt̄ pairs that is expected at Run2. First measurements of the transverse
momentum distribution of tt̄ pairs from ATLAS and CMS are starting to
appear [117, 118].

Our approach to study these processes was based on the use of the factori-
sation properties of QCD radiation in soft and collinear limits. By devising
suitable approximations of the real emission matrix elements, we were able
to analytically compute the structure of the logarithmically enhanced terms,
down to the constant term that survives in the Sudakov region at the first
relative order in αS, and to explicitly determine the anomalous dimensions
that control the pattern of soft-gluon radiation at large angles. These calcu-
lations allowed us to write down the corresponding resummation formulae of
the large logarithmic contributions, and to determine the coefficients control-
ling the resummation at full NLL accuracy. The dynamical and kinematical
information on the perturbative QCD interactions is explicitely worked out
(integrated) up to the level of the measured hadronic variables, whereas the
traces of SU(3) generators are intentionally retained, in a way that preserves
the full information on the colour flow. The cross sections are in fact fac-
torised in colour space, in terms of projections of colour-space matrices over
colour-space amplitudes. The amplitudes capture the hard-scale physics, cor-
responding to non-soft contributions to multi-loop virtual corrections, while
the matrices both account for real and virtual emissions at the soft scale
and describe the evolution from the hard to the soft scale, thus resumming
the logarithmic terms, enhanced by the strong ordering between the two
scales. The separation of hard and soft QCD effects and the adoption of the
colour-space formalism has practical implications when it comes to the ac-
tual computation of resummed cross sections: the explicit form of the various
pieces that compose our resummation formulae at NLL accuracy in addition
determines some NNLL contributions, thanks to quantum interference ef-
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fects. It follows that our approach is suitable for a relatively straightforward
extension of resummation to higher logarithmic accuracy, in that the only
terms to be computed at NNLL are the ones originated from pure NNLO
effects.

In the case of the one-particle cross section, we have checked that the
fixed-order expansion of the cross section presented in Chapter 4 reproduces
the NLO results available in the literature, and that the resummation for-
mula is consistent with less general resummation formulae, valid for the cross
section integrated over rapidity or for the hadroproduction of a photon. We
have explicitely discussed how the same results can be improved to include
NNLL terms. The essential ingredient is the second-order soft-gluon anoma-
lous dimension, for which we have provided a first rough estimation. In
addition the hard-virtual amplitude mut be calculated at NNLO, via the
inclusion of two-loop corrections and of the second-order coefficient of the
subtraction operator.

In the case of tt̄ production the results presented in Chapter 6 have impli-
cations both in resummed and in fixed order calculations. The calculation of
the tt̄ cross section at small transverse momentum provides in fact a consis-
tent framework for the resummation of the tt̄ spectrum by confirming results
previously obtained in SCET and extending them to include the azimuthal
correlations in the small qT limit. At the same time, the results of Chapter
6 pave the way to an extension of the qT subtraction formalism to this class
of processes [141]. The qT subtraction formalism [133] is a powerful method
to perform fully-exclusive NNLO computations for the class of processes in
which a colour singlet final state is produced in hadronic collisions. However,
its present formulation cannot be straightforwardly extended to the processes
considered in this thesis. As a first concrete application of our results we have
applied the qT subtraction to tt̄ production at NLO.

The extension of the results of this thesis to higher perturbative orders is
certainly non-trivial, but the methods we have used are sufficiently general
to make us confident that they can have a number of additional applications.
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