Header

UZH-Logo

Maintenance Infos

Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity


Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver (2015). Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity. BioMed Research International, 2015:363575.

Abstract

Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

Abstract

Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
3 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

21 downloads since deposited on 04 Mar 2015
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2015
Deposited On:04 Mar 2015 15:25
Last Modified:14 Feb 2018 08:53
Publisher:Hindawi Publishing Corporation
ISSN:2314-6133
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1155/2015/363575
PubMed ID:25654098

Download

Download PDF  'Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)