Header

UZH-Logo

Maintenance Infos

Long-term facilitation of ventilation in humans with chronic spinal cord injury


Tester, Nicole J; Fuller, David D; Fromm, Jason S; Spiess, Martina R; Behrman, Andrea L; Mateika, Jason H (2014). Long-term facilitation of ventilation in humans with chronic spinal cord injury. American Journal of Respiratory and Critical Care Medicine, 189(1):57-65.

Abstract

RATIONALE: Intermittent stimulation of the respiratory system with hypoxia causes persistent increases in respiratory motor output (i.e., long-term facilitation) in animals with spinal cord injury. This paradigm, therefore, has been touted as a potential respiratory rehabilitation strategy.
OBJECTIVES: To determine whether acute (daily) exposure to intermittent hypoxia can also evoke long-term facilitation of ventilation after chronic spinal cord injury in humans, and whether repeated daily exposure to intermittent hypoxia enhances the magnitude of this response.
METHODS: Eight individuals with incomplete spinal cord injury (>1 yr; cervical [n = 6], thoracic [n = 2]) were exposed to intermittent hypoxia (eight 2-min intervals of 8% oxygen) for 10 days. During all exposures, end-tidal carbon dioxide levels were maintained, on average, 2 mm Hg above resting values. Minute ventilation, tidal volume, and breathing frequency were measured before (baseline), during, and 30 minutes after intermittent hypoxia. Sham protocols consisted of exposure to room air and were administered to a subset of the participants (n = 4).
MEASUREMENTS AND MAIN RESULTS: Minute ventilation increased significantly for 30 minutes after acute exposure to intermittent hypoxia (P < 0.001), but not after sham exposure. However, the magnitude of ventilatory long-term facilitation was not enhanced over 10 days of intermittent hypoxia exposures.
CONCLUSIONS: Ventilatory long-term facilitation can be evoked by brief periods of hypoxia in humans with chronic spinal cord injury. Thus, intermittent hypoxia may represent a strategy for inducing respiratory neuroplasticity after declines in respiratory function that are related to neurological impairment. Clinical trial registered with www.clinicaltrials.gov (NCT01272011).

Abstract

RATIONALE: Intermittent stimulation of the respiratory system with hypoxia causes persistent increases in respiratory motor output (i.e., long-term facilitation) in animals with spinal cord injury. This paradigm, therefore, has been touted as a potential respiratory rehabilitation strategy.
OBJECTIVES: To determine whether acute (daily) exposure to intermittent hypoxia can also evoke long-term facilitation of ventilation after chronic spinal cord injury in humans, and whether repeated daily exposure to intermittent hypoxia enhances the magnitude of this response.
METHODS: Eight individuals with incomplete spinal cord injury (>1 yr; cervical [n = 6], thoracic [n = 2]) were exposed to intermittent hypoxia (eight 2-min intervals of 8% oxygen) for 10 days. During all exposures, end-tidal carbon dioxide levels were maintained, on average, 2 mm Hg above resting values. Minute ventilation, tidal volume, and breathing frequency were measured before (baseline), during, and 30 minutes after intermittent hypoxia. Sham protocols consisted of exposure to room air and were administered to a subset of the participants (n = 4).
MEASUREMENTS AND MAIN RESULTS: Minute ventilation increased significantly for 30 minutes after acute exposure to intermittent hypoxia (P < 0.001), but not after sham exposure. However, the magnitude of ventilatory long-term facilitation was not enhanced over 10 days of intermittent hypoxia exposures.
CONCLUSIONS: Ventilatory long-term facilitation can be evoked by brief periods of hypoxia in humans with chronic spinal cord injury. Thus, intermittent hypoxia may represent a strategy for inducing respiratory neuroplasticity after declines in respiratory function that are related to neurological impairment. Clinical trial registered with www.clinicaltrials.gov (NCT01272011).

Statistics

Citations

Dimensions.ai Metrics
76 citations in Web of Science®
70 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Pulmonary and Respiratory Medicine
Health Sciences > Critical Care and Intensive Care Medicine
Language:English
Date:1 January 2014
Deposited On:21 Feb 2015 21:56
Last Modified:26 Jan 2022 05:31
Publisher:American Thoracic Society
ISSN:1073-449X
OA Status:Closed
Publisher DOI:https://doi.org/10.1164/rccm.201305-0848OC
PubMed ID:24224903
Full text not available from this repository.