Abstract
A series of 4′-O-glycopyranosyl paromomycin analogs and a 4′-O-(glucosyloxymethyl) analog were synthesized and evaluated for their ribosomal activity to determine the influence of the glycosyl moiety on drug activity and selectivity. Antibacterial activity against clinical strains of Escherichia coli and Staphylococcus aureus was also investigated. While all compounds were less active than paromomycin itself, differences in activity were seen between the gluco-, manno-, and galactopyranosyl series and between individual anomers. These differences in activity, which are discussed in terms of variations in affinity for the ribosomal decoding A site, may prove useful in the design of subsequent generations of improved aminoglycoside antibiotics with reduced toxicity.