Header

UZH-Logo

Maintenance Infos

Phosphorylation signalling through the Legionella quorum sensing histidine kinases LqsS and LqsT converges on the response regulator LqsR


Schell, Ursula; Kessler, Aline; Hilbi, Hubert (2014). Phosphorylation signalling through the Legionella quorum sensing histidine kinases LqsS and LqsT converges on the response regulator LqsR. Molecular Microbiology, 92(5):1039-1055.

Abstract

The environmental bacterium Legionella pneumophila is the causative agent of Legionnaires' disease, a life-threatening pneumonia. For cell-cell communication the bacteria employ the autoinducer LAI-1 (3-hydroxypentadecane-4-one), which is produced and detected by the Lqs (Legionella quorum sensing) system. The system comprises the autoinducer synthase LqsA, the putative sensor kinases LqsS and LqsT, and the prototypic response regulator LqsR. Lqs-regulated processes include L. pneumophila-phagocyte interactions, production of extracellular filaments, and natural competence. Using biochemical approaches we show here that LqsS and LqsT are autophosphorylated by [γ-(32) P]-ATP at a conserved histidine residue (H200 or H204 ) located in their cytoplasmic histidine kinase domain. Pull-down assays revealed that LqsS and LqsT are bound by LqsR or phospho-LqsR. Dependent on the conserved receiver domain aspartate (D108 ), the response regulator prevented autophosphorylation of both sensor kinases by catalysing the dephosphorylation of phospho-LqsS or phospho-LqsT. Moreover, LqsR formed dimers upon phosphorylation at D108 by either acetyl-phosphate or phospho-LqsT. Finally, upon heterologous production in Escherichia coli, LqsT (but not LqsS) was autophosphorylated by ATP, and LqsR prevented the autophosphorylation by catalysing the dephosphorylation of phospho-LqsT. In summary, these results indicate that phosphorylation signalling through the Legionella quorum sensing histidine kinases LqsS and LqsT converges on the response regulator LqsR.

Abstract

The environmental bacterium Legionella pneumophila is the causative agent of Legionnaires' disease, a life-threatening pneumonia. For cell-cell communication the bacteria employ the autoinducer LAI-1 (3-hydroxypentadecane-4-one), which is produced and detected by the Lqs (Legionella quorum sensing) system. The system comprises the autoinducer synthase LqsA, the putative sensor kinases LqsS and LqsT, and the prototypic response regulator LqsR. Lqs-regulated processes include L. pneumophila-phagocyte interactions, production of extracellular filaments, and natural competence. Using biochemical approaches we show here that LqsS and LqsT are autophosphorylated by [γ-(32) P]-ATP at a conserved histidine residue (H200 or H204 ) located in their cytoplasmic histidine kinase domain. Pull-down assays revealed that LqsS and LqsT are bound by LqsR or phospho-LqsR. Dependent on the conserved receiver domain aspartate (D108 ), the response regulator prevented autophosphorylation of both sensor kinases by catalysing the dephosphorylation of phospho-LqsS or phospho-LqsT. Moreover, LqsR formed dimers upon phosphorylation at D108 by either acetyl-phosphate or phospho-LqsT. Finally, upon heterologous production in Escherichia coli, LqsT (but not LqsS) was autophosphorylated by ATP, and LqsR prevented the autophosphorylation by catalysing the dephosphorylation of phospho-LqsT. In summary, these results indicate that phosphorylation signalling through the Legionella quorum sensing histidine kinases LqsS and LqsT converges on the response regulator LqsR.

Statistics

Citations

Dimensions.ai Metrics
22 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Molecular Biology
Language:English
Date:2014
Deposited On:24 Feb 2015 15:41
Last Modified:26 Jan 2022 05:36
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0950-382X
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/mmi.12612
PubMed ID:24720786
Full text not available from this repository.