Header

UZH-Logo

Maintenance Infos

Measurement of $CP$ asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays


LHCb Collaboration; Bernet, R; Müller, K; Steinkamp, O; Straumann, U; Vollhardt, A; et al (2014). Measurement of $CP$ asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays. Journal of High Energy Physics:41.

Abstract

Time-integrated $CP$ asymmetries in $D^0$ decays to the final states $K^- K^+$ and $\pi^- \pi^+$ are measured using proton-proton collisions corresponding to $3\mathrm{\,fb}^{-1}$ of integrated luminosity collected at centre-of-mass energies of $7\mathrm{\,Te\kern -0.1em V}$ and $8\mathrm{\,Te\kern -0.1em V}$. The $D^0$ mesons are produced in semileptonic $b$-hadron decays, where the charge of the accompanying muon is used to determine the initial flavour of the charm meson. The difference in $CP$ asymmetries between the two final states is measured to be \begin{align} \Delta A_{CP} = A_{CP}(K^-K^+)-A_{CP}(\pi^-\pi^+) = (+0.14 \pm 0.16\mathrm{\,(stat)} \pm 0.08\mathrm{\,(syst)})\% \ . \nonumber \end{align} A measurement of $A_{CP}(K^-K^+)$ is obtained assuming negligible $CP$ violation in charm mixing and in Cabibbo-favoured $D$ decays. It is found to be \begin{align} A_{CP}(K^-K^+) = (-0.06 \pm 0.15\mathrm{\,(stat)} \pm 0.10\mathrm{\,(syst)}) \% \ ,\nonumber \end{align} where the correlation coefficient between $\Delta A_{CP}$ and $A_{CP}(K^-K^+)$ is $\rho=0.28$. By combining these results, the $CP$ asymmetry in the $D^0\rightarrow\pi^-\pi^+$ channel is $A_{CP}(\pi^-\pi^+)=(-0.20\pm0.19\mathrm{\,(stat)}\pm0.10\mathrm{\,(syst)})\%$.

Abstract

Time-integrated $CP$ asymmetries in $D^0$ decays to the final states $K^- K^+$ and $\pi^- \pi^+$ are measured using proton-proton collisions corresponding to $3\mathrm{\,fb}^{-1}$ of integrated luminosity collected at centre-of-mass energies of $7\mathrm{\,Te\kern -0.1em V}$ and $8\mathrm{\,Te\kern -0.1em V}$. The $D^0$ mesons are produced in semileptonic $b$-hadron decays, where the charge of the accompanying muon is used to determine the initial flavour of the charm meson. The difference in $CP$ asymmetries between the two final states is measured to be \begin{align} \Delta A_{CP} = A_{CP}(K^-K^+)-A_{CP}(\pi^-\pi^+) = (+0.14 \pm 0.16\mathrm{\,(stat)} \pm 0.08\mathrm{\,(syst)})\% \ . \nonumber \end{align} A measurement of $A_{CP}(K^-K^+)$ is obtained assuming negligible $CP$ violation in charm mixing and in Cabibbo-favoured $D$ decays. It is found to be \begin{align} A_{CP}(K^-K^+) = (-0.06 \pm 0.15\mathrm{\,(stat)} \pm 0.10\mathrm{\,(syst)}) \% \ ,\nonumber \end{align} where the correlation coefficient between $\Delta A_{CP}$ and $A_{CP}(K^-K^+)$ is $\rho=0.28$. By combining these results, the $CP$ asymmetry in the $D^0\rightarrow\pi^-\pi^+$ channel is $A_{CP}(\pi^-\pi^+)=(-0.20\pm0.19\mathrm{\,(stat)}\pm0.10\mathrm{\,(syst)})\%$.

Statistics

Citations

Dimensions.ai Metrics
56 citations in Web of Science®
107 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

72 downloads since deposited on 24 Feb 2015
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Nuclear and High Energy Physics
Language:English
Date:July 2014
Deposited On:24 Feb 2015 13:20
Last Modified:26 Jan 2022 05:44
Publisher:Springer
ISSN:1029-8479
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/JHEP07(2014)041
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)
  • Content: Accepted Version