Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

A model-based analysis of impulsivity using a slot-machine gambling paradigm

Paliwal, Saee; Petzschner, Frederike H; Schmitz, Anna Katharina; Tittgemeyer, Marc; Stephan, Klaas E (2014). A model-based analysis of impulsivity using a slot-machine gambling paradigm. Frontiers in Human Neuroscience:8:428.

Abstract

Impulsivity plays a key role in decision-making under uncertainty. It is a significant contributor to problem and pathological gambling (PG). Standard assessments of impulsivity by questionnaires, however, have various limitations, partly because impulsivity is a broad, multi-faceted concept. What remains unclear is which of these facets contribute to shaping gambling behavior. In the present study, we investigated impulsivity as expressed in a gambling setting by applying computational modeling to data from 47 healthy male volunteers who played a realistic, virtual slot-machine gambling task. Behaviorally, we found that impulsivity, as measured independently by the 11th revision of the Barratt Impulsiveness Scale (BIS-11), correlated significantly with an aggregate read-out of the following gambling responses: bet increases (BIs), machines switches (MS), casino switches (CS), and double-ups (DUs). Using model comparison, we compared a set of hierarchical Bayesian belief-updating models, i.e., the Hierarchical Gaussian Filter (HGF) and Rescorla–Wagner reinforcement learning (RL) models, with regard to how well they explained different aspects of the behavioral data. We then examined the construct validity of our winning models with multiple regression, relating subject-specific model parameter estimates to the individual BIS-11 total scores. In the most predictive model (a three-level HGF), the two free parameters encoded uncertainty-dependent mechanisms of belief updates and significantly explained BIS-11 variance across subjects. Furthermore, in this model, decision noise was a function of trial-wise uncertainty about winning probability. Collectively, our results provide a proof of concept that hierarchical Bayesian models can characterize the decision-making mechanisms linked to the impulsive traits of an individual. These novel indices of gambling mechanisms unmasked during actual play may be useful for online prevention measures for at-risk players and future assessments of PG.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Scopus Subject Areas:Social Sciences & Humanities > Neuropsychology and Physiological Psychology
Life Sciences > Neurology
Health Sciences > Psychiatry and Mental Health
Life Sciences > Biological Psychiatry
Life Sciences > Behavioral Neuroscience
Language:English
Date:3 July 2014
Deposited On:26 Feb 2015 14:36
Last Modified:13 Jan 2025 02:37
Publisher:Frontiers Research Foundation
ISSN:1662-5161
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fnhum.2014.00428
PubMed ID:25071497
Download PDF  'A model-based analysis of impulsivity using a slot-machine gambling paradigm'.
Preview
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
15 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

141 downloads since deposited on 26 Feb 2015
8 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications