Header

UZH-Logo

Maintenance Infos

Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs


Barbieri, Sebastiano; Donati, Olivio F; Froehlich, Johannes M; Thoeny, Harriet C (2016). Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magnetic Resonance in Medicine, 75(5):2175-2184.

Abstract

PURPOSE: To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs.
METHODS: Following the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data.
RESULTS: A Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt : 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp : 15.5% on average; for the pseudodiffusion coefficient Dp : 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions.
CONCLUSION: The Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.

Abstract

PURPOSE: To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs.
METHODS: Following the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data.
RESULTS: A Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt : 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp : 15.5% on average; for the pseudodiffusion coefficient Dp : 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions.
CONCLUSION: The Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.

Statistics

Citations

Dimensions.ai Metrics
64 citations in Web of Science®
66 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Uncontrolled Keywords:abdominal, intravoxel-incoherent-motion, algorithm, least-squares, Bayesian, segmented
Language:English
Date:2016
Deposited On:16 Jul 2015 12:49
Last Modified:26 Jan 2022 06:25
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0740-3194
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/mrm.25765
PubMed ID:26059232
Full text not available from this repository.