Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Quantitative interpretation of FRET experiments via molecular simulation: force field and validation

Best, Robert B; Hofmann, Hagen; Nettels, Daniel; Schuler, Benjamin (2015). Quantitative interpretation of FRET experiments via molecular simulation: force field and validation. Biophysical Journal, 108(11):2721-2731.

Abstract

Molecular simulation is a valuable and complementary tool that may assist with the interpretation of single-molecule Förster resonance energy transfer (FRET) experiments, if the energy function is of sufficiently high quality. Here we present force-field parameters for one of the most common pairs of chromophores used in experiments, AlexaFluor 488 and 594. From microsecond molecular-dynamics simulations, we are able to recover both experimentally determined equilibrium constants and association/dissociation rates of the chromophores with free tryptophan, as well as the decay of fluorescence anisotropy of a labeled protein. We find that it is particularly important to obtain a correct balance of solute-water interactions in the simulations in order to faithfully capture the experimental anisotropy decays, which provide a sensitive benchmark for fluorophore mobility. Lastly, by a combination of experiment and simulation, we address a potential complication in the interpretation of experiments on polyproline, used as a molecular ruler for FRET experiments, namely the potential association of one of the chromophores with the polyproline helix. Under conditions where simulations accurately capture the fluorescence anisotropy decay, we find at most a modest, transient population of conformations in which the chromophores associate with the polyproline. Explicit calculation of FRET transfer efficiencies for short polyprolines yields results in good agreement with experiment. These results illustrate the potential power of a combination of molecular simulation and experiment in quantifying biomolecular dynamics.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Biophysics
Language:English
Date:2 June 2015
Deposited On:24 Sep 2015 10:24
Last Modified:13 Sep 2024 01:38
Publisher:Elsevier
ISSN:0006-3495
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.bpj.2015.04.038
PubMed ID:26039173

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
49 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Sep 2015
0 downloads since 12 months

Authors, Affiliations, Collaborations

Similar Publications