Header

UZH-Logo

Maintenance Infos

Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy


Karen, T; Morren, G; Haensse, D; Bauschatz, A S; Bucher, H U; Wolf, M (2008). Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy. Human Brain Mapping, 29(4):453-460.

Abstract

Brain activity is associated with physiological changes, which alter the optical properties of tissue. These changes can be detected by near-infrared spectroscopy (NIRS). Aim of the study was to determine changes in cerebral oxygenation in response to stimulation in the visual cortex in newborn infants during spontaneous sleep in the first days of life. We used an in-house developed multichannel NIRS imaging instrument, the MCP-II, to measure changes in concentration of oxyhemoglobin (O(2)Hb) and deoxyhemoglobin (HHb) in specific brain areas. In 10 out of 15 subjects, a significant increase in O(2)Hb and/or a significant decrease in HHb were found in one or more channels over the occipital cortex. During stimulation, O(2)Hb increased by a mean of 0.98 mumol/l, HHb decreased by a mean 0.17 mumol/l, and total-Hb increased by a mean of 0.81 mumol/l. The hemodynamic response to visual stimulation in the occipital cortex in newborn infants is similar to adults. The increase in O(2)Hb and the simultaneous decrease in HHb during stimulation suggest an increase in cerebral blood flow (CBF) that overcompensates for the increased oxygen consumption (CMRO(2)) in the activated cortical area.

Abstract

Brain activity is associated with physiological changes, which alter the optical properties of tissue. These changes can be detected by near-infrared spectroscopy (NIRS). Aim of the study was to determine changes in cerebral oxygenation in response to stimulation in the visual cortex in newborn infants during spontaneous sleep in the first days of life. We used an in-house developed multichannel NIRS imaging instrument, the MCP-II, to measure changes in concentration of oxyhemoglobin (O(2)Hb) and deoxyhemoglobin (HHb) in specific brain areas. In 10 out of 15 subjects, a significant increase in O(2)Hb and/or a significant decrease in HHb were found in one or more channels over the occipital cortex. During stimulation, O(2)Hb increased by a mean of 0.98 mumol/l, HHb decreased by a mean 0.17 mumol/l, and total-Hb increased by a mean of 0.81 mumol/l. The hemodynamic response to visual stimulation in the occipital cortex in newborn infants is similar to adults. The increase in O(2)Hb and the simultaneous decrease in HHb during stimulation suggest an increase in cerebral blood flow (CBF) that overcompensates for the increased oxygen consumption (CMRO(2)) in the activated cortical area.

Statistics

Citations

Dimensions.ai Metrics
48 citations in Web of Science®
51 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 25 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Neuroscience Center Zurich
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Scopus Subject Areas:Health Sciences > Anatomy
Health Sciences > Radiological and Ultrasound Technology
Health Sciences > Radiology, Nuclear Medicine and Imaging
Life Sciences > Neurology
Health Sciences > Neurology (clinical)
Uncontrolled Keywords:Anatomy, Radiological and Ultrasound Technology, Radiology Nuclear Medicine and imaging, Neurology, Clinical Neurology
Language:English
Date:2008
Deposited On:25 Jan 2009 17:30
Last Modified:02 Dec 2023 02:38
Publisher:Wiley-Blackwell
ISSN:1065-9471
Additional Information:Full text at http://www3.interscience.wiley.com/cgi-bin/fulltext/114269416/PDFSTART
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/hbm.20411
PubMed ID:17525986