Header

UZH-Logo

Maintenance Infos

Efficient therapy of ischaemic lesions with VEGF121-fibrin in an animal model of systemic sclerosis


Allipour Birgani, Shadab; Mailänder, Marion; Wasle, Ines; Dietrich, Hermann; Gruber, Johann; Distler, Oliver; Sgonc, Roswitha (2015). Efficient therapy of ischaemic lesions with VEGF121-fibrin in an animal model of systemic sclerosis. Annals of the Rheumatic Diseases:1-8.

Abstract

BACKGROUND In systemic sclerosis (SSc), chronic and uncontrolled overexpression of vascular endothelial growth factor (VEGF) results in chaotic vessels, and intractable fingertip ulcers. Vice versa, VEGF is a potent mediator of angiogenesis if temporally and spatially controlled. We have addressed this therapeutic dilemma in SSc by a novel approach using a VEGF121 variant that covalently binds to fibrin and gets released on demand by cellular enzymatic activity. Using University of California at Davis (UCD)-206 chickens, we tested the hypothesis that cell-demanded release of fibrin-bound VEGF121 leads to the formation of stable blood vessels, and clinical improvement of ischaemic lesions.
METHODS Ninety-one early and late ischaemic comb and neck skin lesions of UCD-206 chickens were treated locally with VEGF121-fibrin, fibrin alone, or left untreated. After 1 week of treatment the clinical outcome was assessed. Angiogenesis was studied by immunofluorescence staining of vascular markers quantitatively analysed using TissueQuest.
RESULTS Overall, 79.3% of the lesions treated with VEGF121-fibrin showed clinical improvement, whereas 71.0% of fibrin treated controls, and 93.1% of untreated lesions deteriorated. This was accompanied by significantly increased growth of stable microvessels, upregulation of the proangiogenic VEGFR-2 and its regulator TAL-1, and increase of endogenous endothelial VEGF expression.
CONCLUSIONS Our findings in the avian model of SSc suggest that cell-demanded release of VEGF121 from fibrin matrix induces controlled angiogenesis by differential regulation of VEGFR-1 and VEGFR-2 expression, shifting the balance towards the proangiogenic VEGFR-2. The study shows the potential of covalently conjugated VEGF-fibrin matrices for the therapy of ischaemic lesions such as fingertip ulcers.

Abstract

BACKGROUND In systemic sclerosis (SSc), chronic and uncontrolled overexpression of vascular endothelial growth factor (VEGF) results in chaotic vessels, and intractable fingertip ulcers. Vice versa, VEGF is a potent mediator of angiogenesis if temporally and spatially controlled. We have addressed this therapeutic dilemma in SSc by a novel approach using a VEGF121 variant that covalently binds to fibrin and gets released on demand by cellular enzymatic activity. Using University of California at Davis (UCD)-206 chickens, we tested the hypothesis that cell-demanded release of fibrin-bound VEGF121 leads to the formation of stable blood vessels, and clinical improvement of ischaemic lesions.
METHODS Ninety-one early and late ischaemic comb and neck skin lesions of UCD-206 chickens were treated locally with VEGF121-fibrin, fibrin alone, or left untreated. After 1 week of treatment the clinical outcome was assessed. Angiogenesis was studied by immunofluorescence staining of vascular markers quantitatively analysed using TissueQuest.
RESULTS Overall, 79.3% of the lesions treated with VEGF121-fibrin showed clinical improvement, whereas 71.0% of fibrin treated controls, and 93.1% of untreated lesions deteriorated. This was accompanied by significantly increased growth of stable microvessels, upregulation of the proangiogenic VEGFR-2 and its regulator TAL-1, and increase of endogenous endothelial VEGF expression.
CONCLUSIONS Our findings in the avian model of SSc suggest that cell-demanded release of VEGF121 from fibrin matrix induces controlled angiogenesis by differential regulation of VEGFR-1 and VEGFR-2 expression, shifting the balance towards the proangiogenic VEGFR-2. The study shows the potential of covalently conjugated VEGF-fibrin matrices for the therapy of ischaemic lesions such as fingertip ulcers.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

55 downloads since deposited on 20 Nov 2015
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Immunology and Allergy
Health Sciences > Rheumatology
Life Sciences > Immunology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Language:English, German
Date:11 September 2015
Deposited On:20 Nov 2015 13:06
Last Modified:26 Jan 2022 07:02
Publisher:BMJ Publishing Group
ISSN:0003-4967
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1136/annrheumdis-2015-207548
Related URLs:http://ard.bmj.com/content/early/2015/09/11/annrheumdis-2015-207548.full.pdf+html (Publisher)
PubMed ID:26362758
  • Content: Published Version