Header

UZH-Logo

Maintenance Infos

Systemic regulation of RAS/MAPK signaling by the serotonin metabolite 5-HIAA


Schmid, Tobias; Snoek, L Basten; Fröhli, Erika; van der Bent, M Leontien; Kammenga, Jan; Hajnal, Alex (2015). Systemic regulation of RAS/MAPK signaling by the serotonin metabolite 5-HIAA. PLoS Genetics, 11(5):e1005236.

Abstract

Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.

Abstract

Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
6 citations in Scopus®
7 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 10 Dec 2015
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:May 2015
Deposited On:10 Dec 2015 08:31
Last Modified:14 Feb 2018 09:55
Publisher:Public Library of Science (PLoS)
ISSN:1553-7390
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pgen.1005236
PubMed ID:25978500

Download

Download PDF  'Systemic regulation of RAS/MAPK signaling by the serotonin metabolite 5-HIAA'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 4MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)