Abstract
The structural and mechanical integrity of amnion is essential to prevent preterm premature rupture (PPROM) of the fetal membrane. In this study, the mechanical response of human amnion to repeated loading and the microstructural mechanisms determining its behavior were investigated. Inflation and uniaxial cyclic tests were combined with corresponding in situ experiments in a multiphoton microscope (MPM). Fresh unfixed amnion was imaged during loading and changes in thickness and collagen orientation were quantified. Mechanical and in situ experiments revealed differences between the investigated configurations in the deformation and microstructural mechanisms. Repeated inflation induces a significant but reversible volume change and is characterized by high energy dissipation. Under uniaxial tension, volume reduction is associated with low energy, unrecoverable in-plane fiber reorientation.