Header

UZH-Logo

Maintenance Infos

Embryo oxygenation in pipefish brood pouches: novel insights


Braga Goncalves, Ines; Ahnesjö, Ingrid; Kvarnemo, Charlotta (2015). Embryo oxygenation in pipefish brood pouches: novel insights. Journal of Experimental Biology, 218:1639-1646.

Abstract

The pipefish brood pouch presents a unique mode of parental care that enables males to protect, osmoregulate, nourish and oxygenate the developing young. Using a very fine O2 probe, we assessed the extent to which males of the broad-nosed pipefish (Syngnathus typhle) oxygenate the developing embryos and are able to maintain pouch fluid O2 levels when brooding in normoxia (100% O2 saturation) and hypoxia (40% O2 saturation) for 24 days. In both treatments, pouch fluidO2 saturation levels were lower compared with the surrounding water and decreased throughout the brooding period, reflecting greater offspring demand for O2 during development and/or decreasing paternal ability to provide O2 to the embryos. Male condition (hepatosomatic index) was negatively affected by hypoxia. Larger males had higher pouch fluid O2 saturation levels compared with smaller males, and levels were higher in the bottom section of the pouch compared with other sections. Embryo size was positively correlated with O2 availability, irrespective of their position in the pouch. Two important conclusions can be drawn from our findings. First, our results highlight a potential limitation to brooding within the pouch and dismiss the notion of closed brood pouches as welloxygenated structures promoting the evolution of larger eggs in syngnathids. Second, we provide direct evidence that paternal care improves with male size in this species. This finding offers an explanation for the documented strong female preference for larger partners because, in terms of oxygenation, the brood pouch can restrict embryo growth.

Abstract

The pipefish brood pouch presents a unique mode of parental care that enables males to protect, osmoregulate, nourish and oxygenate the developing young. Using a very fine O2 probe, we assessed the extent to which males of the broad-nosed pipefish (Syngnathus typhle) oxygenate the developing embryos and are able to maintain pouch fluid O2 levels when brooding in normoxia (100% O2 saturation) and hypoxia (40% O2 saturation) for 24 days. In both treatments, pouch fluidO2 saturation levels were lower compared with the surrounding water and decreased throughout the brooding period, reflecting greater offspring demand for O2 during development and/or decreasing paternal ability to provide O2 to the embryos. Male condition (hepatosomatic index) was negatively affected by hypoxia. Larger males had higher pouch fluid O2 saturation levels compared with smaller males, and levels were higher in the bottom section of the pouch compared with other sections. Embryo size was positively correlated with O2 availability, irrespective of their position in the pouch. Two important conclusions can be drawn from our findings. First, our results highlight a potential limitation to brooding within the pouch and dismiss the notion of closed brood pouches as welloxygenated structures promoting the evolution of larger eggs in syngnathids. Second, we provide direct evidence that paternal care improves with male size in this species. This finding offers an explanation for the documented strong female preference for larger partners because, in terms of oxygenation, the brood pouch can restrict embryo growth.

Statistics

Citations

Dimensions.ai Metrics
14 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

87 downloads since deposited on 29 Dec 2015
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Physiology
Life Sciences > Aquatic Science
Life Sciences > Animal Science and Zoology
Life Sciences > Molecular Biology
Life Sciences > Insect Science
Language:English
Date:2015
Deposited On:29 Dec 2015 15:42
Last Modified:26 Jan 2022 07:46
Publisher:Company of Biologists
ISSN:0022-0949
Additional Information:The data is available from Dryad Digital Repository. http://doi.org/10.5061/dryad.1v42d
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1242/jeb.120907
PubMed ID:26041030
  • Content: Published Version