Header

UZH-Logo

Maintenance Infos

NET formation can occur independently of RIPK3 and MLKL signaling


Amini, Poorya; Stojkov, Darko; Wang, Xiaoliang; Wicki, Simone; Kaufmann, Thomas; Wong, Wendy Wei-Lynn; Simon, Hans-Uwe; Yousefi, Shida (2016). NET formation can occur independently of RIPK3 and MLKL signaling. European Journal of Immunology, 46(1):178-184.

Abstract

The importance of neutrophil extracellular traps (NETs) in innate immunity is well established but the molecular mechanisms responsible for their formation are still a matter of scientific dispute. Here, we aim to characterize a possible role of the receptor-interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) signaling pathway, which are known to cause necroptosis, in NET formation. Using genetic and pharmacological approaches, we investigated whether this programmed form of necrosis is a prerequisite for NET formation. NETs have been defined as extracellular DNA scaffolds associated with the neutrophil granule protein elastase that are capable of killing bacteria. Neither Ripk3-deficient mouse neutrophils nor human neutrophils in which MLKL had been pharmacologically inactivated, exhibited abnormalities in NET formation upon physiological activation or exposure to low concentrations of PMA. These data indicate that NET formation occurs independently of both RIPK3 and MLKL signaling. This article is protected by copyright. All rights reserved.

Abstract

The importance of neutrophil extracellular traps (NETs) in innate immunity is well established but the molecular mechanisms responsible for their formation are still a matter of scientific dispute. Here, we aim to characterize a possible role of the receptor-interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) signaling pathway, which are known to cause necroptosis, in NET formation. Using genetic and pharmacological approaches, we investigated whether this programmed form of necrosis is a prerequisite for NET formation. NETs have been defined as extracellular DNA scaffolds associated with the neutrophil granule protein elastase that are capable of killing bacteria. Neither Ripk3-deficient mouse neutrophils nor human neutrophils in which MLKL had been pharmacologically inactivated, exhibited abnormalities in NET formation upon physiological activation or exposure to low concentrations of PMA. These data indicate that NET formation occurs independently of both RIPK3 and MLKL signaling. This article is protected by copyright. All rights reserved.

Statistics

Citations

Dimensions.ai Metrics
31 citations in Web of Science®
30 citations in Scopus®
31 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:January 2016
Deposited On:07 Jan 2016 10:35
Last Modified:19 Aug 2018 00:40
Publisher:Wiley-VCH Verlag
ISSN:0014-2980
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/eji.201545615
PubMed ID:26549703
Project Information:
  • : FunderSNSF
  • : Grant ID310030_146215
  • : Project TitleMolecular mechanisms of extracellular DNA trap formation by granulocytes
  • : FunderSNSF
  • : Grant ID310030_146181
  • : Project TitleRole of autophagy in inflammation and cancer

Download

Full text not available from this repository.
View at publisher

Get full-text in a library