Header

UZH-Logo

Maintenance Infos

How useful and reliable are disaster databases in the context of climate and global change? A comparative case study analysis in Peru


Huggel, Christian; Raissig, Annik; Rohrer, Mario; Romero, Gilberto; Diaz, A; Salzmann, Nadine (2015). How useful and reliable are disaster databases in the context of climate and global change? A comparative case study analysis in Peru. Natural Hazards and Earth System Sciences, 15(3):475-485.

Abstract

Damage caused by weather- and climate-related disasters have increased over the past decades, and growing exposure and wealth have been identified as main drivers of this increase. Disaster databases are a primary tool for the analysis of disaster characteristics and trends at global or national scales, and they support disaster risk reduction and climate change adaptation. However, the quality, consistency and completeness of different disaster databases are highly variable. Even though such variation critically influences the outcome of any study, comparative analyses of different databases are still rare to date. Furthermore, there is an unequal geographic distribution of current disaster trend studies, with developing countries being underrepresented.
Here, we analyze three different disaster databases in the developing-country context of Peru: a global database (Emergency Events Database: EM-DAT), a multinational Latin American database (DesInventar) and a national database (Peruvian National Information System for the Prevention of Disasters: SINPAD). The analysis is performed across three dimensions: (1) spatial scales, from local to regional (provincial) and national scale; (2) timescales, from single events to decadal trends; and (3) disaster categories and metrics, including the number of single disaster event occurrence, or people killed and affected.
Results show limited changes in disaster occurrence in the Cusco and Apurímac regions in southern Peru over the past four decades but strong positive trends in people affected at the national scale. We furthermore found large variations of the disaster metrics studied over different spatial and temporal scales, depending on the disaster database analyzed. We conclude and recommend that the type, method and source of documentation should be carefully evaluated for any analysis of disaster databases; reporting criteria should be improved and documentation efforts strengthened.

Abstract

Damage caused by weather- and climate-related disasters have increased over the past decades, and growing exposure and wealth have been identified as main drivers of this increase. Disaster databases are a primary tool for the analysis of disaster characteristics and trends at global or national scales, and they support disaster risk reduction and climate change adaptation. However, the quality, consistency and completeness of different disaster databases are highly variable. Even though such variation critically influences the outcome of any study, comparative analyses of different databases are still rare to date. Furthermore, there is an unequal geographic distribution of current disaster trend studies, with developing countries being underrepresented.
Here, we analyze three different disaster databases in the developing-country context of Peru: a global database (Emergency Events Database: EM-DAT), a multinational Latin American database (DesInventar) and a national database (Peruvian National Information System for the Prevention of Disasters: SINPAD). The analysis is performed across three dimensions: (1) spatial scales, from local to regional (provincial) and national scale; (2) timescales, from single events to decadal trends; and (3) disaster categories and metrics, including the number of single disaster event occurrence, or people killed and affected.
Results show limited changes in disaster occurrence in the Cusco and Apurímac regions in southern Peru over the past four decades but strong positive trends in people affected at the national scale. We furthermore found large variations of the disaster metrics studied over different spatial and temporal scales, depending on the disaster database analyzed. We conclude and recommend that the type, method and source of documentation should be carefully evaluated for any analysis of disaster databases; reporting criteria should be improved and documentation efforts strengthened.

Statistics

Citations

Dimensions.ai Metrics
36 citations in Web of Science®
37 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

94 downloads since deposited on 07 Jan 2016
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > General Earth and Planetary Sciences
Uncontrolled Keywords:General Earth and Planetary Sciences
Language:English
Date:2015
Deposited On:07 Jan 2016 07:50
Last Modified:26 Jan 2022 07:51
Publisher:Copernicus Publications
ISSN:1561-8633
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/nhess-15-475-2015
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)