Header

UZH-Logo

Maintenance Infos

Setting characteristics of a resin infiltration system for incipient caries treatment


Rahiotis, C; Zinelis, S; Eliades, G; Eliades, T (2015). Setting characteristics of a resin infiltration system for incipient caries treatment. Journal of Dentistry, 43(6):715-719.

Abstract

OBJECTIVES: This study investigated the curing efficiency, the extent of atmospheric oxygen inhibition to the polymerization reaction and the mechanical properties of a new resin-infiltration system for caries treatment.
METHODS: The curing efficiency was estimated by measuring the percentage degree of cure (%DC) of thin resin films (h: 150μm, Ø: 5mm, n=3), 10min after 40s exposure to a quartz halogen bulb (750mW/cm2) light curing unit (Optilux 501, Demetron/Kerr, USA), in the absence of O2, by micro ATR-FTIR spectroscopy. The extent of O2 inhibition on resin film setting (width in μm) was assessed by transmission optical microscopy on thin films (h: 150μm, Ø: ∼7mm, n=5) placed between two transparent cover slips and exposed to air from lateral sites. For each sample the extent of inhibition was measured at 5 different locations. The mechanical properties were tested employing Instrumented Indentation Testing according to ISO 14577:2002. Resin specimens (h: 2mm, Ø: 10mm, n=5) were prepared employing cylindrical teflon moulds enclosed in transparent matrix strips and glass slides as before. The measurements were performed employing a Vickers indenter attached to a universal hardness testing machine (ZHU2.5/Z2.5 plus test Xpert software, Zwick/Roell, Ulm, Germany). The parameters tested were Martens Hardness (MH), Vickers Hardness (VHN), Indentation Elastic Modulus (EIT) and elastic to total ratio of indentation work (ηIT). For all these tests, specimens of a conventional light-curing bonding resin (HB-Heliobond, Ivoclar-Vivadent, FL) prepared as above were used as control. Student t-test was used to identify statistically significant differences between the two materials in the parameters tested (a: 0.05).
RESULTS: The results of the materials tested were: (a) [% DC]; IC: 57.4±1.5, HB: 59.8±2.4, (b) [Width of O2 inhibition/μm]; IC: 33.1±6.5, HB: 23.6±4.4, (c) [MH/N/mm(2)] IC; 116±16, HB: 261±35, (d) [VHN]; IC; 15.4±2.5, HB: 22.1±1.8, (e) [EIT/(GPa)]; IC; 2.3±0.4, HB: 7.5±0.5, and (g) [ηIT (%)] IC; 50.3±3.4, HB: 35.1±1.9. The IC presented no significant difference in terms of % DC, higher thickness of the inhibited layer, lower MH, VHN, EIT and greater ηIT values than HB.
CONCLUSIONS AND CLINICAL SIGNIFICANT: The resin-infiltrating system for incipient caries treatment demonstrated the same curing efficiency with a conventional unfilled bonding resin, but exhibited higher extent of oxygen inhibition, lower hardness, lower elastic modulus and higher plastic to elastic indentation energy.

Abstract

OBJECTIVES: This study investigated the curing efficiency, the extent of atmospheric oxygen inhibition to the polymerization reaction and the mechanical properties of a new resin-infiltration system for caries treatment.
METHODS: The curing efficiency was estimated by measuring the percentage degree of cure (%DC) of thin resin films (h: 150μm, Ø: 5mm, n=3), 10min after 40s exposure to a quartz halogen bulb (750mW/cm2) light curing unit (Optilux 501, Demetron/Kerr, USA), in the absence of O2, by micro ATR-FTIR spectroscopy. The extent of O2 inhibition on resin film setting (width in μm) was assessed by transmission optical microscopy on thin films (h: 150μm, Ø: ∼7mm, n=5) placed between two transparent cover slips and exposed to air from lateral sites. For each sample the extent of inhibition was measured at 5 different locations. The mechanical properties were tested employing Instrumented Indentation Testing according to ISO 14577:2002. Resin specimens (h: 2mm, Ø: 10mm, n=5) were prepared employing cylindrical teflon moulds enclosed in transparent matrix strips and glass slides as before. The measurements were performed employing a Vickers indenter attached to a universal hardness testing machine (ZHU2.5/Z2.5 plus test Xpert software, Zwick/Roell, Ulm, Germany). The parameters tested were Martens Hardness (MH), Vickers Hardness (VHN), Indentation Elastic Modulus (EIT) and elastic to total ratio of indentation work (ηIT). For all these tests, specimens of a conventional light-curing bonding resin (HB-Heliobond, Ivoclar-Vivadent, FL) prepared as above were used as control. Student t-test was used to identify statistically significant differences between the two materials in the parameters tested (a: 0.05).
RESULTS: The results of the materials tested were: (a) [% DC]; IC: 57.4±1.5, HB: 59.8±2.4, (b) [Width of O2 inhibition/μm]; IC: 33.1±6.5, HB: 23.6±4.4, (c) [MH/N/mm(2)] IC; 116±16, HB: 261±35, (d) [VHN]; IC; 15.4±2.5, HB: 22.1±1.8, (e) [EIT/(GPa)]; IC; 2.3±0.4, HB: 7.5±0.5, and (g) [ηIT (%)] IC; 50.3±3.4, HB: 35.1±1.9. The IC presented no significant difference in terms of % DC, higher thickness of the inhibited layer, lower MH, VHN, EIT and greater ηIT values than HB.
CONCLUSIONS AND CLINICAL SIGNIFICANT: The resin-infiltrating system for incipient caries treatment demonstrated the same curing efficiency with a conventional unfilled bonding resin, but exhibited higher extent of oxygen inhibition, lower hardness, lower elastic modulus and higher plastic to elastic indentation energy.

Statistics

Citations

Dimensions.ai Metrics
14 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

395 downloads since deposited on 13 Jan 2016
49 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Orthodontics and Pediatric Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > General Dentistry
Language:English
Date:June 2015
Deposited On:13 Jan 2016 09:35
Last Modified:26 Jan 2022 07:59
Publisher:Elsevier
ISSN:0300-5712
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.jdent.2015.03.010
PubMed ID:25862277
  • Content: Accepted Version
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)