Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Linear spanning sets for matrix spaces

Micheli, Giacomo; Rosenthal, Joachim; Vettori, Paolo (2015). Linear spanning sets for matrix spaces. Linear Algebra and its Applications, 483:309-322.

Abstract

Necessary and sufficient conditions are given on matrices $\mathit{A}$, $\mathit{B}$ and $\mathit{S}$, having entries in some field $\mathbb{F}$ and suitable dimensions, such that the linear span of the terms $\mathit{A}^i \mathit{SB}^j$ over $\mathbb{F}$ is equal to the whole matrix space. This result is then used to determine the cardinality of subsets of $\mathbb{F}[\mathit{A}]\mathit{S} \mathbb{F}[\mathit{B}]$ when $\mathbb{F}$ is a $\mathbf{finite}$ field.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Scopus Subject Areas:Physical Sciences > Algebra and Number Theory
Physical Sciences > Numerical Analysis
Physical Sciences > Geometry and Topology
Physical Sciences > Discrete Mathematics and Combinatorics
Language:English
Date:26 June 2015
Deposited On:04 Feb 2016 09:59
Last Modified:14 Sep 2024 01:37
Publisher:Elsevier
ISSN:0024-3795
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.laa.2015.06.008
Download PDF  'Linear spanning sets for matrix spaces'.
Preview
  • Content: Accepted Version
  • Language: English

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

60 downloads since deposited on 04 Feb 2016
5 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications