Header

UZH-Logo

Maintenance Infos

Maintaining homeostasis by decision-making


Korn, Christoph W; Bach, Dominik R (2015). Maintaining homeostasis by decision-making. PLoS Computational Biology, 11(5):e1004301.

Abstract

Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that--in both the foraging and the casino frames--participants' choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization.

Abstract

Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that--in both the foraging and the casino frames--participants' choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

79 downloads since deposited on 21 Jan 2016
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Modeling and Simulation
Physical Sciences > Ecology
Life Sciences > Molecular Biology
Life Sciences > Genetics
Life Sciences > Cellular and Molecular Neuroscience
Physical Sciences > Computational Theory and Mathematics
Language:English
Date:May 2015
Deposited On:21 Jan 2016 11:57
Last Modified:26 Jan 2022 08:26
Publisher:Public Library of Science (PLoS)
ISSN:1553-734X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pcbi.1004301
PubMed ID:26024504
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)