Abstract
Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.