Header

UZH-Logo

Maintenance Infos

Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography


Nilchian, Masih; Wang, Zhentian; Thuering, Thomas; Unser, Michael; Stampanoni, Marco (2015). Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography. Optics Express, 23(8):10631-10642.

Abstract

Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.

Abstract

Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.

Statistics

Citations

Dimensions.ai Metrics
11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

79 downloads since deposited on 08 Feb 2016
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Scopus Subject Areas:Physical Sciences > Atomic and Molecular Physics, and Optics
Language:English
Date:2015
Deposited On:08 Feb 2016 14:22
Last Modified:26 Jan 2022 08:41
Publisher:Optical Society of America
ISSN:1094-4087
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1364/OE.23.010631
PubMed ID:25969102
  • Content: Published Version