Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

A novel role for the tumour suppressor Nitrilase1 modulating the Wnt/β-catenin signalling pathway

Mittag, Sonnhild; Valenta, Tomas; Weiske, Jörg; Bloch, Laura; Klingel, Susanne; Gradl, Dietmar; Wetzel, Franziska; Chen, Yuan; Petersen, Iver; Basler, Konrad; Huber, Otmar (2016). A novel role for the tumour suppressor Nitrilase1 modulating the Wnt/β-catenin signalling pathway. Cell Discovery, 2:15039.

Abstract

Nitrilase1 was classified as a tumour suppressor in association with the fragile histidine-triad protein Fhit. However, knowledge about nitrilase1 and its tumour suppressor function is still limited. Whereas nitrilase1 and Fhit are discrete proteins in mammals, they are merged in Drosophila melanogaster and Caenorhabditis elegans. According to the Rosetta-Stone hypothesis, proteins encoded as fusion proteins in one organism and as separate proteins in another organism may act in the same signalling pathway. Although a direct interaction of human nitrilase1 and Fhit has not been shown, our previous finding that Fhit interacts with β-catenin and represses its transcriptional activity in the canonical Wnt pathway suggested that human nitrilase1 also modulates Wnt signalling. In fact, human nitrilase1 forms a complex with β-catenin and LEF-1/TCF-4, represses β-catenin-mediated transcription and shows an additive effect together with Fhit. Knockdown of human nitrilase1 enhances Wnt target gene expression. Moreover, our experiments show that β-catenin competes away human nitrilase1 from LEF-1/TCF and thereby contributes to the activation of Wnt-target gene transcription. Inhibitory activity of human nitrilase1 on vertebrate Wnt signalling was confirmed by repression of Wnt-induced double axis formation in Xenopus embryogenesis. In line with this finding, the Drosophila fusion protein Drosophila NitFhit directly binds to Armadillo and represses the Wingless pathway in reporter gene assays. Genetic experiments confirmed the repressive activity of Drosophila NitFhit on Wingless signalling in the Drosophila wing imaginal disc. In addition, colorectal tumour microarray analysis revealed a significantly reduced expression of human nitrilase1 in poorly differentiated tumours. Taken together, repression of the canonical Wnt pathway represents a new mechanism for the human nitrilase1 tumour suppressor function.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Genetics
Life Sciences > Cell Biology
Language:English
Date:2016
Deposited On:18 Feb 2016 20:43
Last Modified:14 Sep 2024 01:40
Publisher:Nature Publishing Group
ISSN:2056-5968
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/celldisc.2015.39
Download PDF  'A novel role for the tumour suppressor Nitrilase1 modulating the Wnt/β-catenin signalling pathway'.
Preview
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
18 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

50 downloads since deposited on 18 Feb 2016
3 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications