Abstract
Automated reconstruction of neural connectivity graphs from electron microscopy image stacks is an essential step towards large-scale neural circuit mapping. While significant progress has recently been made in automated segmentation of neurons and detection of synapses, the problem of synaptic partner assignment for polyadic (one-to-many) synapses, prevalent in the Drosophila brain, remains unsolved. In this contribution, we propose a method which automatically assigns pre- and postsynaptic roles to neurites adjacent to a synaptic site. The method constructs a probabilistic graphical model over potential synaptic partner pairs which includes factors to account for a high rate of one-to-many connections, as well as the possibility of the same neuron to be pre-synaptic in one synapse and post-synaptic in another. The algorithm has been validated on a publicly available stack of ssTEM images of Drosophila neural tissue and has been shown to reconstruct most of the synaptic relations correctly.