Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training

Montero, David; Cathomen, Adrian; Jacobs, Robert A; Flück, Daniela; de Leur, Jeroen; Keiser, Stefanie; Bonne, Thomas; Kirk, Niels; Lundby, Anne-Kristine; Lundby, Carsten (2015). Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. Journal of Physiology, 593(20):4677-4688.

Abstract

It remains unclear whether improvements in peak oxygen uptake (V̇(O2peak)) following endurance training (ET) are primarily determined by central and/or peripheral adaptations. Herein, we tested the hypothesis that the improvement in V̇(O2peak) following 6 weeks of ET is mainly determined by haematological rather than skeletal muscle adaptations. Sixteen untrained healthy male volunteers (age = 25 ± 4 years, V̇(O2peak) = 3.5 ± 0.5 l min(-1)) underwent supervised ET (6 weeks, 3-4 sessions per week). V̇(O2peak), peak cardiac output (Q̇(peak)), haemoglobin mass (Hb(mass)) and blood volumes were assessed prior to and following ET. Skeletal muscle biopsies were analysed for mitochondrial volume density (Mito(VD)), capillarity, fibre types and respiratory capacity (OXPHOS). After the post-ET assessment, red blood cell volume (RBCV) was re-established at the pre-ET level by phlebotomy and V̇(O2peak) and Q̇(peak) were measured again. We speculated that the contribution of skeletal muscle adaptations to the ET-induced increase in V̇(O2peak) would be revealed when controlling for haematological adaptations. V̇(O2peak) and Q̇(peak) were increased (P < 0.05) following ET (9 ± 8 and 7 ± 6%, respectively) and decreased (P < 0.05) after phlebotomy (-7 ± 7 and -10 ± 7%). RBCV, plasma volume and Hb(mass) all increased (P < 0.05) after ET (8 ± 4, 4 ± 6 and 6 ± 5%). As for skeletal muscle adaptations, capillary-to-fibre ratio and total Mito(VD) increased (P < 0.05) following ET (18 ± 16 and 43 ± 30%), but OXPHOS remained unaltered. Through stepwise multiple regression analysis, Q̇(peak), RBCV and Hb(mass) were found to be independent predictors of V̇(O2peak). In conclusion, the improvement in V̇(O2peak) following 6 weeks of ET is primarily attributed to increases in Q̇(peak) and oxygen-carrying capacity of blood in untrained healthy young subjects.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Zurich Center for Integrative Human Physiology (ZIHP)
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Physiology
Language:English
Date:15 October 2015
Deposited On:23 Feb 2016 16:23
Last Modified:14 Mar 2025 02:41
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0022-3751
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1113/JP270250
PubMed ID:26282186

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
137 citations in Web of Science®
145 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 23 Feb 2016
0 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications