Header

UZH-Logo

Maintenance Infos

Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity


Abstract

Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.

Abstract

Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.

Statistics

Citations

Dimensions.ai Metrics
9 citations in Web of Science®
13 citations in Scopus®
6 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

12 downloads since deposited on 11 May 2016
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
04 Faculty of Medicine > University Hospital Zurich > Urological Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:11 May 2016 18:50
Last Modified:02 Feb 2018 09:59
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep24146
PubMed ID:27052161

Download

Download PDF  'Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 4MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)