Header

UZH-Logo

Maintenance Infos

A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution


Klenk, Christoph; Ehrenmann, Janosch; Schütz, Marco; Plückthun, Andreas (2016). A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution. Scientific Reports, 6:21294.

Abstract

Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis.

Abstract

Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
7 citations in Scopus®
8 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

13 downloads since deposited on 18 Jul 2016
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2016
Deposited On:18 Jul 2016 11:45
Last Modified:02 Feb 2018 10:11
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep21294
PubMed ID:26887595

Download

Download PDF  'A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)