Header

UZH-Logo

Maintenance Infos

Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin


Ahmad, Shoeb; Pecqueur, Ludovic; Dreier, Birgit; Hamdane, Djemel; Aumont-Nicaise, Magali; Plückthun, Andreas; Knossow, Marcel; Gigant, Benoît (2016). Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin. Scientific Reports, 6:28922.

Abstract

Affinity maturation by random mutagenesis and selection is an established technique to make binding molecules more suitable for applications in biomedical research, diagnostics and therapy. Here we identified an unexpected novel mechanism of affinity increase upon in vitro evolution of a tubulin-specific designed ankyrin repeat protein (DARPin). Structural analysis indicated that in the progenitor DARPin the C-terminal capping repeat (C-cap) undergoes a 25° rotation to avoid a clash with tubulin upon binding. Additionally, the C-cap appears to be involved in electrostatic repulsion with tubulin. Biochemical and structural characterizations demonstrated that the evolved mutants achieved a gain in affinity through destabilization of the C-cap, which relieves the need of a DARPin conformational change upon tubulin binding and removes unfavorable interactions in the complex. Therefore, this specific case of an order-to-disorder transition led to a 100-fold tighter complex with a subnanomolar equilibrium dissociation constant, remarkably associated with a 30% decrease of the binding surface.

Abstract

Affinity maturation by random mutagenesis and selection is an established technique to make binding molecules more suitable for applications in biomedical research, diagnostics and therapy. Here we identified an unexpected novel mechanism of affinity increase upon in vitro evolution of a tubulin-specific designed ankyrin repeat protein (DARPin). Structural analysis indicated that in the progenitor DARPin the C-terminal capping repeat (C-cap) undergoes a 25° rotation to avoid a clash with tubulin upon binding. Additionally, the C-cap appears to be involved in electrostatic repulsion with tubulin. Biochemical and structural characterizations demonstrated that the evolved mutants achieved a gain in affinity through destabilization of the C-cap, which relieves the need of a DARPin conformational change upon tubulin binding and removes unfavorable interactions in the complex. Therefore, this specific case of an order-to-disorder transition led to a 100-fold tighter complex with a subnanomolar equilibrium dissociation constant, remarkably associated with a 30% decrease of the binding surface.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

41 downloads since deposited on 28 Jul 2016
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:2016
Deposited On:28 Jul 2016 12:30
Last Modified:26 Jan 2022 09:44
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep28922
PubMed ID:27380724
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)