Header

UZH-Logo

Maintenance Infos

Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT


Boss, Andreas; Bisdas, Sotirios; Kolb, Armin; Hofmann, Matthias; Ernemann, Ulrike; Claussen, Claus D; Pfannenberg, Christina; Pichler, Bernd J; Reimold, Matthias; Stegger, Lars (2010). Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. Journal of Nuclear Medicine, 51(8):1198-1205.

Abstract

Simultaneous PET and MRI using new hybrid PET/MRI systems promises optimal spatial and temporal coregistration of structural, functional, and molecular image data. In a pilot study of 10 patients with intracranial masses, the feasibility of tumor assessment using a PET/MRI system comprising lutetium oxyorthosilicate scintillators coupled to avalanche photodiodes was evaluated, and quantification accuracy was compared with conventional PET/CT datasets.
METHODS: All measurements were performed with a hybrid PET/MRI scanner consisting of a conventional 3-T MRI scanner in combination with an inserted MRI-compatible PET system. Attenuation correction of PET/MR images was computed from MRI datasets. Diagnoses at the time of referral were low-grade astrocytoma (n = 2), suspicion of low-grade astrocytoma (n = 1), anaplastic astrocytoma (World Health Organization grade III; n = 1), glioblastoma (n = 2), atypical neurocytoma (n = 1), and meningioma (n = 3). In the glial tumors, (11)C-methionine was used for PET; in the meningiomas, (68)Ga-DOTATOC was administered. Tumor-to-gray matter and tumor-to-white matter ratios were calculated for gliomas, and tracer uptake of meningiomas was referenced to nasal mucosa. PET/MRI was performed directly after clinically indicated PET/CT examination.
RESULTS: In all patients, the PET datasets showed similar diagnostic image quality on the hybrid PET/MRI and the PET/CT studies; however, slight streak artifacts were visible in coronal and sagittal sections when using the higher intrinsic resolution of the PET/MRI insert. Prefiltering of images with a 4-mm gaussian filter at a resolution comparable to that of the PET/CT system virtually eliminated these artifacts. Although acquisition of the PET/MR images started at 30-60 min after PET/CT (20.4-min half-life of (11)C) acquisition, the signal-to-noise ratio was good enough, thus underlining the high sensitivity of the PET insert, compared with whole-body PET systems. The computed tumor-to-reference tissue ratios exhibited an excellent accordance between the PET/MRI and PET/CT systems, with a Pearson correlation coefficient of 0.98. Mean paired relative error was 7.9% +/- 12.2%. No significant artifacts or distortions were detected in the simultaneously acquired MR images using the PET/MRI scanner.
CONCLUSION: Structural, functional, and molecular imaging in patients with brain tumors is feasible with diagnostic imaging quality using simultaneous hybrid PET/MR image acquisition.

Abstract

Simultaneous PET and MRI using new hybrid PET/MRI systems promises optimal spatial and temporal coregistration of structural, functional, and molecular image data. In a pilot study of 10 patients with intracranial masses, the feasibility of tumor assessment using a PET/MRI system comprising lutetium oxyorthosilicate scintillators coupled to avalanche photodiodes was evaluated, and quantification accuracy was compared with conventional PET/CT datasets.
METHODS: All measurements were performed with a hybrid PET/MRI scanner consisting of a conventional 3-T MRI scanner in combination with an inserted MRI-compatible PET system. Attenuation correction of PET/MR images was computed from MRI datasets. Diagnoses at the time of referral were low-grade astrocytoma (n = 2), suspicion of low-grade astrocytoma (n = 1), anaplastic astrocytoma (World Health Organization grade III; n = 1), glioblastoma (n = 2), atypical neurocytoma (n = 1), and meningioma (n = 3). In the glial tumors, (11)C-methionine was used for PET; in the meningiomas, (68)Ga-DOTATOC was administered. Tumor-to-gray matter and tumor-to-white matter ratios were calculated for gliomas, and tracer uptake of meningiomas was referenced to nasal mucosa. PET/MRI was performed directly after clinically indicated PET/CT examination.
RESULTS: In all patients, the PET datasets showed similar diagnostic image quality on the hybrid PET/MRI and the PET/CT studies; however, slight streak artifacts were visible in coronal and sagittal sections when using the higher intrinsic resolution of the PET/MRI insert. Prefiltering of images with a 4-mm gaussian filter at a resolution comparable to that of the PET/CT system virtually eliminated these artifacts. Although acquisition of the PET/MR images started at 30-60 min after PET/CT (20.4-min half-life of (11)C) acquisition, the signal-to-noise ratio was good enough, thus underlining the high sensitivity of the PET insert, compared with whole-body PET systems. The computed tumor-to-reference tissue ratios exhibited an excellent accordance between the PET/MRI and PET/CT systems, with a Pearson correlation coefficient of 0.98. Mean paired relative error was 7.9% +/- 12.2%. No significant artifacts or distortions were detected in the simultaneously acquired MR images using the PET/MRI scanner.
CONCLUSION: Structural, functional, and molecular imaging in patients with brain tumors is feasible with diagnostic imaging quality using simultaneous hybrid PET/MR image acquisition.

Statistics

Citations

Dimensions.ai Metrics
180 citations in Web of Science®
211 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Language:English
Date:August 2010
Deposited On:17 Aug 2016 10:16
Last Modified:16 Nov 2023 08:05
Publisher:Society of Nuclear Medicine
ISSN:0161-5505
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.2967/jnumed.110.074773
PubMed ID:20660388
Full text not available from this repository.