Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Migration von ZORA auf die Software DSpace

ZORA will change to a new software on 8th September 2025. Please note: deadline for new submissions is 21th July 2025!

Information & dates for training courses can be found here: Information on Software Migration.

Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

Charalampidis, Charalampos; van As, D; Box, J E; van den Broeke, M R; Colgan, W T; Doyle, S H; Hubbard, A L; MacFerrin, M; Machguth, H; Smeets, C J P Paul (2015). Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland. The Cryosphere, 9(6):2163-2181.

Abstract

We present 5 years (2009–2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. – above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m−2) more solar radiation than the average of all other years.
A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt–albedo feedback.
Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Water Science and Technology
Physical Sciences > Earth-Surface Processes
Uncontrolled Keywords:Earth-Surface Processes, Water Science and Technology
Language:English
Date:2015
Deposited On:19 Sep 2016 13:15
Last Modified:14 Jun 2025 01:39
Publisher:Copernicus Publications
ISSN:1994-0416
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/tc-9-2163-2015
Download PDF  'Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland'.
Preview
  • Content: Published Version
  • Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
33 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

60 downloads since deposited on 19 Sep 2016
6 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications