Header

UZH-Logo

Maintenance Infos

Large-scale inference of conjunctive Bayesian networks


Montazeri, Hesam; Kuipers, Jack; Kouyos, Roger; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Günthard, Huldrych F; Beerenwinkel, Niko (2016). Large-scale inference of conjunctive Bayesian networks. Bioinformatics, 32(17):i727-i735.

Abstract

UNLABELLED The continuous time conjunctive Bayesian network (CT-CBN) is a graphical model for analyzing the waiting time process of the accumulation of genetic changes (mutations). CT-CBN models have been successfully used in several biological applications such as HIV drug resistance development and genetic progression of cancer. However, current approaches for parameter estimation and network structure learning of CBNs can only deal with a small number of mutations (<20). Here, we address this limitation by presenting an efficient and accurate approximate inference algorithm using a Monte Carlo expectation-maximization algorithm based on importance sampling. The new method can now be used for a large number of mutations, up to one thousand, an increase by two orders of magnitude. In simulation studies, we present the accuracy as well as the running time efficiency of the new inference method and compare it with a MLE method, expectation-maximization, and discrete time CBN model, i.e. a first-order approximation of the CT-CBN model. We also study the application of the new model on HIV drug resistance datasets for the combination therapy with zidovudine plus lamivudine (AZT + 3TC) as well as under no treatment, both extracted from the Swiss HIV Cohort Study database. AVAILABILITY AND IMPLEMENTATION The proposed method is implemented as an R package available at https://github.com/cbg-ethz/MC-CBN CONTACT: niko.beerenwinkel@bsse.ethz.ch SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Abstract

UNLABELLED The continuous time conjunctive Bayesian network (CT-CBN) is a graphical model for analyzing the waiting time process of the accumulation of genetic changes (mutations). CT-CBN models have been successfully used in several biological applications such as HIV drug resistance development and genetic progression of cancer. However, current approaches for parameter estimation and network structure learning of CBNs can only deal with a small number of mutations (<20). Here, we address this limitation by presenting an efficient and accurate approximate inference algorithm using a Monte Carlo expectation-maximization algorithm based on importance sampling. The new method can now be used for a large number of mutations, up to one thousand, an increase by two orders of magnitude. In simulation studies, we present the accuracy as well as the running time efficiency of the new inference method and compare it with a MLE method, expectation-maximization, and discrete time CBN model, i.e. a first-order approximation of the CT-CBN model. We also study the application of the new model on HIV drug resistance datasets for the combination therapy with zidovudine plus lamivudine (AZT + 3TC) as well as under no treatment, both extracted from the Swiss HIV Cohort Study database. AVAILABILITY AND IMPLEMENTATION The proposed method is implemented as an R package available at https://github.com/cbg-ethz/MC-CBN CONTACT: niko.beerenwinkel@bsse.ethz.ch SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Statistics

Citations

Dimensions.ai Metrics
11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Virology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Statistics and Probability
Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Physical Sciences > Computer Science Applications
Physical Sciences > Computational Theory and Mathematics
Physical Sciences > Computational Mathematics
Language:English
Date:1 September 2016
Deposited On:21 Oct 2016 09:54
Last Modified:16 Nov 2023 08:13
Publisher:Oxford University Press
ISSN:1367-4803
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/bioinformatics/btw459
PubMed ID:27587695
Full text not available from this repository.