Header

UZH-Logo

Maintenance Infos

Optimizing treatment success in multiple sclerosis


Ziemssen, T; Derfuss, T; de Stefano, N; Giovannoni, G; Palavra, F; Tomic, D; Vollmer, T; Schippling, S (2016). Optimizing treatment success in multiple sclerosis. Journal of Neurology, 263(6):1053-1065.

Abstract

Despite important advances in the treatment of multiple sclerosis (MS) over recent years, the introduction of several disease-modifying therapies (DMTs), the burden of progressive disability and premature mortality associated with the condition remains substantial. This burden, together with the high healthcare and societal costs associated with MS, creates a compelling case for early treatment optimization with highly efficacious therapies. Often, patients receive several first-line therapies, while more recent and in part more effective treatments are still being introduced only after these have failed. However, with the availability of highly efficacious therapies, a novel treatment strategy has emerged, where the aim is to achieve no evidence of disease activity (NEDA). Achieving NEDA necessitates regular monitoring of relapses, disability and functionality. However, there is only a poor correlation between conventional magnetic resonance imaging measures like T2 hyperintense lesion burden and the level of clinical disability. Hence, MRI-based measures of brain atrophy have emerged in recent years potentially reflecting the magnitude of MS-related neuroaxonal damage. Currently available DMTs differ markedly in their effects on brain atrophy: some, such as fingolimod, have been shown to significantly slow brain volume loss, compared to placebo, whereas others have shown either no, inconsistent, or delayed effects. In addition to regular monitoring, treatment optimization also requires early intervention with efficacious therapies, because accumulating evidence shows that effective intervention during a limited period early in the course of MS is critical for maintaining neurological function and preventing subsequent disability. Together, the advent of new MS therapies and evolving management strategies offer exciting new opportunities to optimize treatment outcomes.

Abstract

Despite important advances in the treatment of multiple sclerosis (MS) over recent years, the introduction of several disease-modifying therapies (DMTs), the burden of progressive disability and premature mortality associated with the condition remains substantial. This burden, together with the high healthcare and societal costs associated with MS, creates a compelling case for early treatment optimization with highly efficacious therapies. Often, patients receive several first-line therapies, while more recent and in part more effective treatments are still being introduced only after these have failed. However, with the availability of highly efficacious therapies, a novel treatment strategy has emerged, where the aim is to achieve no evidence of disease activity (NEDA). Achieving NEDA necessitates regular monitoring of relapses, disability and functionality. However, there is only a poor correlation between conventional magnetic resonance imaging measures like T2 hyperintense lesion burden and the level of clinical disability. Hence, MRI-based measures of brain atrophy have emerged in recent years potentially reflecting the magnitude of MS-related neuroaxonal damage. Currently available DMTs differ markedly in their effects on brain atrophy: some, such as fingolimod, have been shown to significantly slow brain volume loss, compared to placebo, whereas others have shown either no, inconsistent, or delayed effects. In addition to regular monitoring, treatment optimization also requires early intervention with efficacious therapies, because accumulating evidence shows that effective intervention during a limited period early in the course of MS is critical for maintaining neurological function and preventing subsequent disability. Together, the advent of new MS therapies and evolving management strategies offer exciting new opportunities to optimize treatment outcomes.

Statistics

Citations

Dimensions.ai Metrics
45 citations in Web of Science®
50 citations in Scopus®
71 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 18 Nov 2016
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Neurology, Clinical Neurology
Language:English
Date:June 2016
Deposited On:18 Nov 2016 09:14
Last Modified:19 Aug 2018 04:58
Publisher:Springer
ISSN:0340-5354
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s00415-015-7986-y
PubMed ID:26705122

Download

Download PDF  'Optimizing treatment success in multiple sclerosis'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)