Header

UZH-Logo

Maintenance Infos

Cortical sensorimotor processing of painful pressure in patients with chronic lower back pain-an optical neuroimaging study using fNIRS


Vrana, Andrea; Meier, Michael L; Hotz-Boendermaker, Sabina; Humphreys, Barry K; Scholkmann, Felix (2016). Cortical sensorimotor processing of painful pressure in patients with chronic lower back pain-an optical neuroimaging study using fNIRS. Frontiers in Human Neuroscience, 10:578.

Abstract

In this study we investigated sensorimotor processing of painful pressure stimulation on the lower back of patients with chronic lower back pain (CLBP) by using functional near-infrared spectroscopy (fNIRS) to measure changes in cerebral hemodynamics and oxygenation. The main objectives were whether patients with CLBP show different relative changes in oxy- and deoxyhemoglobin ([O2Hb] and [HHb]) in the supplementary motor area (SMA) and primary somatosensory cortex (S1) compared to healthy controls (HC). Twelve patients with CLBP (32 ± 6.1 years; range: 24-44 years; nine women) and 20 HCs (33.5 ± 10.7 years; range 22-61 years; eight women) participated in the study. Painful and non-painful pressure stimulation was exerted with a thumb grip perpendicularly to the spinous process of the lumbar spine. A force sensor was attached at the spinous process in order to control pressure forces. Tactile stimulation was realized by a one-finger brushing. Hemodynamic changes in the SMA and S1 were measured bilaterally using a multi-channel continuous wave fNIRS imaging system and a multi-distant probe array. Patients with CLBP showed significant stimulus-evoked hemodynamic responses in [O2Hb] only in the right S1, while the HC exhibited significant [O2Hb] changes bilaterally in both, SMA and S1. However, the group comparisons revealed no significant different hemodynamic responses in [O2Hb] and [HHb] in the SMA and S1 after both pressure stimulations. This non-significant result might be driven by the high inter-subject variability of hemodynamic responses that has been observed within the patients group. In conclusion, we could not find different stimulus-evoked hemodynamic responses in patients with CLBP compared to HCs. This indicates that neither S1 nor the SMA show a specificity for CLBP during pressure stimulation on the lower back. However, the results point to a potential subgrouping regarding task-related cortical activity within the CLBP group; a finding worth further research.

Abstract

In this study we investigated sensorimotor processing of painful pressure stimulation on the lower back of patients with chronic lower back pain (CLBP) by using functional near-infrared spectroscopy (fNIRS) to measure changes in cerebral hemodynamics and oxygenation. The main objectives were whether patients with CLBP show different relative changes in oxy- and deoxyhemoglobin ([O2Hb] and [HHb]) in the supplementary motor area (SMA) and primary somatosensory cortex (S1) compared to healthy controls (HC). Twelve patients with CLBP (32 ± 6.1 years; range: 24-44 years; nine women) and 20 HCs (33.5 ± 10.7 years; range 22-61 years; eight women) participated in the study. Painful and non-painful pressure stimulation was exerted with a thumb grip perpendicularly to the spinous process of the lumbar spine. A force sensor was attached at the spinous process in order to control pressure forces. Tactile stimulation was realized by a one-finger brushing. Hemodynamic changes in the SMA and S1 were measured bilaterally using a multi-channel continuous wave fNIRS imaging system and a multi-distant probe array. Patients with CLBP showed significant stimulus-evoked hemodynamic responses in [O2Hb] only in the right S1, while the HC exhibited significant [O2Hb] changes bilaterally in both, SMA and S1. However, the group comparisons revealed no significant different hemodynamic responses in [O2Hb] and [HHb] in the SMA and S1 after both pressure stimulations. This non-significant result might be driven by the high inter-subject variability of hemodynamic responses that has been observed within the patients group. In conclusion, we could not find different stimulus-evoked hemodynamic responses in patients with CLBP compared to HCs. This indicates that neither S1 nor the SMA show a specificity for CLBP during pressure stimulation on the lower back. However, the results point to a potential subgrouping regarding task-related cortical activity within the CLBP group; a finding worth further research.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

61 downloads since deposited on 08 Dec 2016
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Social Sciences & Humanities > Neuropsychology and Physiological Psychology
Life Sciences > Neurology
Health Sciences > Psychiatry and Mental Health
Life Sciences > Biological Psychiatry
Life Sciences > Behavioral Neuroscience
Language:English
Date:2016
Deposited On:08 Dec 2016 15:25
Last Modified:17 Nov 2023 08:29
Publisher:Frontiers Research Foundation
ISSN:1662-5161
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fnhum.2016.00578
PubMed ID:27909403
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)