Header

UZH-Logo

Maintenance Infos

Diffusion tensor imaging predicts motor outcome in children with acquired brain injury


Ressel, Volker; O'Gorman Tuura, Ruth; Scheer, Ianina; van Hedel, Hubertus J A (2017). Diffusion tensor imaging predicts motor outcome in children with acquired brain injury. Brain imaging and behavior, 11(5):1373-1384.

Abstract

BACKGROUND: Rehabilitation in children with acquired brain injury is a challenging endeavour. There is a large variability in motor recovery between patients, and a need to optimize therapies by exploiting cerebral plasticity and recovery mechanisms. This retrospective study aims to identify tract-based markers that could serve as predictors of functional outcome following rehabilitation.
METHODS: Twenty-nine children with traumatic brain injury (n = 14) or stroke (n = 15) underwent a 3 T Magnetic Resonance Imaging (MRI) measurement, including Diffusion Tensor Imaging (DTI) between admission to the Hospital and onset of rehabilitation therapy at the Rehabilitation Centre. The Functional Independence Measure for Children (WeeFIM) was routinely applied at admission and discharge from the Rehabilitation Centre. Distinguishing between children with good versus poor functional independence was performed using ROC-analysis. A non-parametric partial correlation analysis between the DTI and WeeFIM motor scores was performed with age, time in rehabilitation, and time of MRI scan after injury as covariates.
RESULTS: Mean fractional anisotropy (FA) from the DTI in the ipsilesional corticospinal-tract provided the highest predictive accuracy (sensitivity = 95 %, specificity = 78 %, Youden Index = 0.73, Area under the curve = 0.9), in comparison to the lesion volume or other clinical variables. Mean FA of the ipsilesional corticospinal-tract correlated positively with the WeeFIM discharge motor scores (ρ = 0.547, p = 0.004). Prediction was poorer for the lesion volume or Glasgow Coma Scale.
CONCLUSION: The results suggest that DTI data could improve the prediction of functional outcome after rehabilitation in children and adolescents with stroke or traumatic brain injury. Specifically, mean FA shows the highest predictive accuracy in comparison to lesion volume or clinical scales.

Abstract

BACKGROUND: Rehabilitation in children with acquired brain injury is a challenging endeavour. There is a large variability in motor recovery between patients, and a need to optimize therapies by exploiting cerebral plasticity and recovery mechanisms. This retrospective study aims to identify tract-based markers that could serve as predictors of functional outcome following rehabilitation.
METHODS: Twenty-nine children with traumatic brain injury (n = 14) or stroke (n = 15) underwent a 3 T Magnetic Resonance Imaging (MRI) measurement, including Diffusion Tensor Imaging (DTI) between admission to the Hospital and onset of rehabilitation therapy at the Rehabilitation Centre. The Functional Independence Measure for Children (WeeFIM) was routinely applied at admission and discharge from the Rehabilitation Centre. Distinguishing between children with good versus poor functional independence was performed using ROC-analysis. A non-parametric partial correlation analysis between the DTI and WeeFIM motor scores was performed with age, time in rehabilitation, and time of MRI scan after injury as covariates.
RESULTS: Mean fractional anisotropy (FA) from the DTI in the ipsilesional corticospinal-tract provided the highest predictive accuracy (sensitivity = 95 %, specificity = 78 %, Youden Index = 0.73, Area under the curve = 0.9), in comparison to the lesion volume or other clinical variables. Mean FA of the ipsilesional corticospinal-tract correlated positively with the WeeFIM discharge motor scores (ρ = 0.547, p = 0.004). Prediction was poorer for the lesion volume or Glasgow Coma Scale.
CONCLUSION: The results suggest that DTI data could improve the prediction of functional outcome after rehabilitation in children and adolescents with stroke or traumatic brain injury. Specifically, mean FA shows the highest predictive accuracy in comparison to lesion volume or clinical scales.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Life Sciences > Neurology
Life Sciences > Cognitive Neuroscience
Health Sciences > Neurology (clinical)
Life Sciences > Cellular and Molecular Neuroscience
Health Sciences > Psychiatry and Mental Health
Life Sciences > Behavioral Neuroscience
Language:English
Date:2017
Deposited On:23 Dec 2016 10:14
Last Modified:16 May 2024 03:31
Publisher:Springer
ISSN:1931-7557
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s11682-016-9637-z
PubMed ID:27734299
Full text not available from this repository.