Header

UZH-Logo

Maintenance Infos

Inflammasome recognition and regulation of the legionella flagellum


Schell, Ursula; Simon, Sylvia; Hilbi, Hubert (2016). Inflammasome recognition and regulation of the legionella flagellum. Current topics in microbiology and immunology, 397:161-181.

Abstract

The Gram-negative bacterium Legionella pneumophila colonizes extracellular environmental niches and infects free-living protozoa. Upon inhalation into the human lung, the opportunistic pathogen grows in macrophages and causes a fulminant pneumonia termed Legionnaires' disease. L. pneumophila employs a biphasic life cycle, comprising a replicative, non-virulent, and a stationary, virulent form. In the latter phase, the pathogen produces a plethora of so-called effector proteins, which are injected into host cells, where they subvert pivotal processes and promote the formation of a distinct membrane-bound compartment, the Legionella-containing vacuole. In the stationary phase, the bacteria also produce a single monopolar flagellum and become motile. L. pneumophila flagellin is recognized by and triggers the host's NAIP5 (Birc1e)/NLRC4 (Ipaf) inflammasome, which leads to caspase-1 activation, pore formation, and pyroptosis. The production of L. pneumophila flagellin and pathogen-host interactions are controlled by a complex stationary phase regulatory network, detecting nutrient availability as well as the Legionella quorum sensing (Lqs) signaling compound LAI-1 (3-hydroxypentadecane-4-one). Thus, the small molecule LAI-1 coordinates L. pneumophila flagellin production and motility, inflammasome activation, and virulence.

Abstract

The Gram-negative bacterium Legionella pneumophila colonizes extracellular environmental niches and infects free-living protozoa. Upon inhalation into the human lung, the opportunistic pathogen grows in macrophages and causes a fulminant pneumonia termed Legionnaires' disease. L. pneumophila employs a biphasic life cycle, comprising a replicative, non-virulent, and a stationary, virulent form. In the latter phase, the pathogen produces a plethora of so-called effector proteins, which are injected into host cells, where they subvert pivotal processes and promote the formation of a distinct membrane-bound compartment, the Legionella-containing vacuole. In the stationary phase, the bacteria also produce a single monopolar flagellum and become motile. L. pneumophila flagellin is recognized by and triggers the host's NAIP5 (Birc1e)/NLRC4 (Ipaf) inflammasome, which leads to caspase-1 activation, pore formation, and pyroptosis. The production of L. pneumophila flagellin and pathogen-host interactions are controlled by a complex stationary phase regulatory network, detecting nutrient availability as well as the Legionella quorum sensing (Lqs) signaling compound LAI-1 (3-hydroxypentadecane-4-one). Thus, the small molecule LAI-1 coordinates L. pneumophila flagellin production and motility, inflammasome activation, and virulence.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
4 citations in Scopus®
4 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2016
Deposited On:16 Dec 2016 06:51
Last Modified:02 Feb 2018 11:00
Publisher:Springer
ISSN:0070-217X
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/978-3-319-41171-2_8
PubMed ID:27460809

Download

Full text not available from this repository.
View at publisher

Get full-text in a library