Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

nIFTy galaxy cluster simulations – II. Radiative models

Abstract

We have simulated the formation of a massive galaxy cluster (M_{200}^crit = 1.1 × 1015 h-1 M⊙) in a Λ cold dark matter universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modelling hydrodynamics with full radiative subgrid physics. These codes include smoothed-particle hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modelled with different radiative physical implementations - such as cooling, star formation and thermal active galactic nucleus (AGN) feedback. We compare images of the cluster at z = 0, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al.: radiative physics + classic SPH can produce entropy cores, at least in the case of non cool-core clusters. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content - for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Language:English
Date:2016
Deposited On:04 Jan 2017 08:34
Last Modified:16 Oct 2024 01:37
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stw800

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
47 citations in Web of Science®
47 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

52 downloads since deposited on 04 Jan 2017
5 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications