Header

UZH-Logo

Maintenance Infos

Comparison of black hole growth in galaxy mergers with gasoline and ramses


Gabor, Jared M; Capelo, Pedro R; Volonteri, Marta; Bournaud, Frédéric; Bellovary, Jillian; Governato, Fabio; Quinn, Thomas (2016). Comparison of black hole growth in galaxy mergers with gasoline and ramses. Astronomy and Astrophysics, 592:A62.

Abstract

Supermassive black hole dynamics during galaxy mergers is crucial in determining the rate of black hole mergers and cosmic black hole growth. As simulations achieve higher resolution, it becomes important to assess whether the black hole dynamics is influenced by the treatment of the interstellar medium in different simulation codes. We compare simulations of black hole growth in galaxy mergers with two codes: the smoothed particle hydrodynamics code GASOLINE, and the adaptive mesh refinement code RAMSES. We seek to identify predictions of these models that are robust despite differences in hydrodynamic methods and implementations of subgrid physics. We find that the general behavior is consistent between codes. Black hole accretion is minimal while the galaxies are well-separated (and even as they fly by within 10 kpc at the first pericenter). At late stages, when the galaxies pass within a few kpc, tidal torques drive nuclear gas inflow that triggers bursts of black hole accretion accompanied by star formation. We also note quantitative discrepancies that are model dependent: our RAMSES simulations show less star formation and black hole growth, and a smoother gas distribution with larger clumps and filaments than our GASOLINE simulations. We attribute these differences primarily to the subgrid models for black hole fueling, feedback, and gas thermodynamics. The main conclusion is that differences exist quantitatively between codes, and this should be kept in mind when making comparisons with observations. However, both codes capture the same dynamical behaviors in terms of triggering black hole accretion, star formation, and black hole dynamics, which is reassuring.

Abstract

Supermassive black hole dynamics during galaxy mergers is crucial in determining the rate of black hole mergers and cosmic black hole growth. As simulations achieve higher resolution, it becomes important to assess whether the black hole dynamics is influenced by the treatment of the interstellar medium in different simulation codes. We compare simulations of black hole growth in galaxy mergers with two codes: the smoothed particle hydrodynamics code GASOLINE, and the adaptive mesh refinement code RAMSES. We seek to identify predictions of these models that are robust despite differences in hydrodynamic methods and implementations of subgrid physics. We find that the general behavior is consistent between codes. Black hole accretion is minimal while the galaxies are well-separated (and even as they fly by within 10 kpc at the first pericenter). At late stages, when the galaxies pass within a few kpc, tidal torques drive nuclear gas inflow that triggers bursts of black hole accretion accompanied by star formation. We also note quantitative discrepancies that are model dependent: our RAMSES simulations show less star formation and black hole growth, and a smoother gas distribution with larger clumps and filaments than our GASOLINE simulations. We attribute these differences primarily to the subgrid models for black hole fueling, feedback, and gas thermodynamics. The main conclusion is that differences exist quantitatively between codes, and this should be kept in mind when making comparisons with observations. However, both codes capture the same dynamical behaviors in terms of triggering black hole accretion, star formation, and black hole dynamics, which is reassuring.

Statistics

Citations

Dimensions.ai Metrics
23 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

49 downloads since deposited on 04 Jan 2017
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Language:English
Date:2016
Deposited On:04 Jan 2017 09:48
Last Modified:26 Jan 2022 11:05
Publisher:EDP Sciences
ISSN:0004-6361
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1051/0004-6361/201527143