Header

UZH-Logo

Maintenance Infos

Reconstructing the annual mass balance of the Echaurren Norte glacier (Central Andes, 33.5° S) using local and regional hydroclimatic data


Masiokas, Mariano H; Christie, Duncan A; Le Quesne, Carlos; Pitte, Pierre; Ruiz, Lucas; Villalba, Ricardo; Luckman, Brian H; Berthier, Etienne; Nussbaumer, Samuel U; González-Reyes, Álvaro; McPhee, James; Barcaza, Gonzalo (2016). Reconstructing the annual mass balance of the Echaurren Norte glacier (Central Andes, 33.5° S) using local and regional hydroclimatic data. The Cryosphere, 10(2):927-940.

Abstract

Despite the great number and variety of glaciers in southern South America, in situ glacier mass-balance records are extremely scarce and glacier–climate relationships are still poorly understood in this region. Here we use the longest (>  35 years) and most complete in situ mass-balance record, available for the Echaurren Norte glacier (ECH) in the Andes at  ∼  33.5° S, to develop a minimal glacier surface mass-balance model that relies on nearby monthly precipitation and air temperature data as forcing. This basic model is able to explain 78 % of the variance in the annual glacier mass-balance record over the 1978–2013 calibration period. An attribution assessment identified precipitation variability as the dominant forcing modulating annual mass balances at ECH, with temperature variations likely playing a secondary role. A regionally averaged series of mean annual streamflow records from both sides of the Andes between  ∼  30 and 37° S is then used to estimate, through simple linear regression, this glacier's annual mass-balance variations since 1909. The reconstruction model captures 68 % of the observed glacier mass-balance variability and shows three periods of sustained positive mass balances embedded in an overall negative trend over the past 105 years. The three periods of sustained positive mass balances (centered in the 1920s–1930s, in the 1980s and in the first decade of the 21st century) coincide with several documented glacier advances in this region. Similar trends observed in other shorter glacier mass-balance series suggest that the Echaurren Norte glacier reconstruction is representative of larger-scale conditions and could be useful for more detailed glaciological, hydrological and climatological assessments in this portion of the Andes.

Abstract

Despite the great number and variety of glaciers in southern South America, in situ glacier mass-balance records are extremely scarce and glacier–climate relationships are still poorly understood in this region. Here we use the longest (>  35 years) and most complete in situ mass-balance record, available for the Echaurren Norte glacier (ECH) in the Andes at  ∼  33.5° S, to develop a minimal glacier surface mass-balance model that relies on nearby monthly precipitation and air temperature data as forcing. This basic model is able to explain 78 % of the variance in the annual glacier mass-balance record over the 1978–2013 calibration period. An attribution assessment identified precipitation variability as the dominant forcing modulating annual mass balances at ECH, with temperature variations likely playing a secondary role. A regionally averaged series of mean annual streamflow records from both sides of the Andes between  ∼  30 and 37° S is then used to estimate, through simple linear regression, this glacier's annual mass-balance variations since 1909. The reconstruction model captures 68 % of the observed glacier mass-balance variability and shows three periods of sustained positive mass balances embedded in an overall negative trend over the past 105 years. The three periods of sustained positive mass balances (centered in the 1920s–1930s, in the 1980s and in the first decade of the 21st century) coincide with several documented glacier advances in this region. Similar trends observed in other shorter glacier mass-balance series suggest that the Echaurren Norte glacier reconstruction is representative of larger-scale conditions and could be useful for more detailed glaciological, hydrological and climatological assessments in this portion of the Andes.

Statistics

Citations

Dimensions.ai Metrics
43 citations in Web of Science®
45 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 11 Jan 2017
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Water Science and Technology
Physical Sciences > Earth-Surface Processes
Uncontrolled Keywords:Earth-Surface Processes, Water Science and Technology
Language:English
Date:2016
Deposited On:11 Jan 2017 15:30
Last Modified:20 May 2022 14:14
Publisher:Copernicus Publications
ISSN:1994-0416
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/tc-10-927-2016
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)