Header

UZH-Logo

Maintenance Infos

Spatio-temporal dynamics of soil CH4 uptake after application of N fertilizer with and without the nitrification inhibitor 3,4- dimethylpyrazole phosphate (DMPP)


Rime, Thomas; Niklaus, Pascal A (2017). Spatio-temporal dynamics of soil CH4 uptake after application of N fertilizer with and without the nitrification inhibitor 3,4- dimethylpyrazole phosphate (DMPP). Soil Biology and Biochemistry, 104:218-225.

Abstract

Soil ecosystems actively regulate climate by controlling methane and nitrous oxide fluxes into the atmosphere. Soils have been, however, drastically altered by agricultural practices, such as nitrogen amendment which increases nitrous oxide emission while it reduces methane uptakes in well-aerated soils by affecting methane-oxidizing bacteria. New nitrification inhibitors, such as 3,4-dimethylpyrazole phosphate (DMPP), are often applied in combination with nitrogen-based fertilizer to increase plant productivity by increasing available ammonium and inhibiting denitrification processes reducing in turn nitrous oxide emissions. However, the increase in ammonium due to nitrification inhibition might also affect methane oxidizing bacteria. We therefore investigated the effects of nitrogen-based fertilizer and DMPP on methane and nitrous oxide fluxes in an extensively managed grassland. We also determined the spatial distribution of active methane oxidizing bacteria by radiolabeling. Short-term reduction in methane uptake and methanotrophic activity occurred after application of 600 kg N ha−1 while DMPP did not alter methane uptake but reduced nitrous oxide emission. The combination of both radio-labeling and field measurement revealed that methane uptake collapsed in the field when methanotrophic activity was inhibited not only in the surface but also in deeper soil. Finally, both methane uptake and methanotrophic activity recovered with time.

Abstract

Soil ecosystems actively regulate climate by controlling methane and nitrous oxide fluxes into the atmosphere. Soils have been, however, drastically altered by agricultural practices, such as nitrogen amendment which increases nitrous oxide emission while it reduces methane uptakes in well-aerated soils by affecting methane-oxidizing bacteria. New nitrification inhibitors, such as 3,4-dimethylpyrazole phosphate (DMPP), are often applied in combination with nitrogen-based fertilizer to increase plant productivity by increasing available ammonium and inhibiting denitrification processes reducing in turn nitrous oxide emissions. However, the increase in ammonium due to nitrification inhibition might also affect methane oxidizing bacteria. We therefore investigated the effects of nitrogen-based fertilizer and DMPP on methane and nitrous oxide fluxes in an extensively managed grassland. We also determined the spatial distribution of active methane oxidizing bacteria by radiolabeling. Short-term reduction in methane uptake and methanotrophic activity occurred after application of 600 kg N ha−1 while DMPP did not alter methane uptake but reduced nitrous oxide emission. The combination of both radio-labeling and field measurement revealed that methane uptake collapsed in the field when methanotrophic activity was inhibited not only in the surface but also in deeper soil. Finally, both methane uptake and methanotrophic activity recovered with time.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
2 citations in Scopus®
2 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 16 Jan 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Soil Science, Microbiology
Language:English
Date:January 2017
Deposited On:16 Jan 2017 13:18
Last Modified:19 Aug 2018 06:49
Publisher:Elsevier
ISSN:0038-0717
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.soilbio.2016.11.001

Download