Abstract
The aim of this study was to evaluate whether effects of environmental estrogens on fish growth and reproduction may be mediated via modulating the growth hormone (GH)/insulin-like growth factor I (IGF-I) system. To this end, developing male and female monosex populations of tilapia were exposed to 17alpha-ethinylestradiol (EE2) at 5 and 25 ng EE2/l water from 10-day postfertilization (DPF) until 100 DPF. Under exposure to both EE2 concentrations, sex ratio shifted toward more females and body length, and weight were significantly reduced in males. The growth-reducing effect was associated with significant changes in hepatic IGF-I expression, both in males and females and with significant alterations of IGF-I mRNA and GH mRNA in the brain. The changes in IGF-I and GH mRNA were accompanied by altered estrogen receptor alpha (ERalpha) expression in brain and liver. These findings point to an influence of estrogenic exposure on the endocrine GH/IGF-I axis. In addition, the EE2 treatment resulted in significant changes of ERalpha and IGF-I expression in ovaries and testis, suggesting that the estrogens interact not only with the endocrine but also with the autocrine/paracrine part of the IGF-I system. Overall, our results provide evidence that EE2 at environmentally relevant concentrations is able to interfere with the GH/IGF-I system in bony fish and that the impairing effects of estrogens reported on fish growth and reproductive functions may rather result from a cross talk between the sex steroid and the IGF-I system than be toxicological.