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ABSTRACT 

A new method is presented for the combination of spectro-electrochemistry and femtosecond 2D IR 

spectroscopy. The key-concept is based on ultrathin (~nm) conductive layers of Indium-Tin-Oxide 

(ITO) as working electrodes on a single reflection Attenuated Total Reflectance (ATR) element in 

conjunction with ultrafast, multi-dimensional ATR spectroscopy. The ATR geometry offers prominent 

benefits as compared to transmission or external reflection experiments in ultrafast spectro-

electrochemistry, i.e. surface-sensitivity for studying electrochemical processes directly at the solvent-

electrode interface as well as the application of strongly IR-absorbing solvents such as water due to a 

very short effective path-length of the evanescent wave at the interface. We present 2D ATR IR 

spectra of carbon monoxide (CO) adsorbed to platinum-coated, ultrathin ITO electrodes with the 

electrochemical performance being demonstrated by vibrational Stark-shift spectroscopy of the CO 

stretching mode. 
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The dynamics of molecules at solid-liquid interfaces, which can be electrified on demand, are 

of significant importance in different fields of chemistry and physics, but are difficult to 

access experimentally.1–7 Particularly ultrafast vibrational spectroscopy offers a high potential 

regarding identification and characterization of transient species at electrode-electrolyte 

interfaces. These signals bear information of the structural dynamics of and interaction 

between molecules and their environment. It is well-known that two-dimensional infrared (2D 

IR) spectroscopy8–11 contains such detailed information. In analogy to 2D NMR spectroscopy, 

a correlation between two frequency axes allows for the resolution of for instance vibrational 

coupling, chemical exchange, energy transfer, vibrational relaxation or spectral diffusion of 

chemical bonds in 2D IR spectroscopy.8–11 It is highly desirable to make such information 

available also from electrode-electrolyte interfaces.  

Here, we report a new spectroscopic method for the resolution of ultrafast, multi-dimensional 

signals from immobilized molecules at electrodes in solution. Our method is based on 

Attenuated Total Reflectance (ATR) spectro-electrochemistry12–14 in combination with the 

recently developed ultrafast 2D (ATR) IR spectroscopy15–17 and yields interface-sensitive, 

multi-dimensional signals with sub-picosecond temporal resolution. We resolve 2D ATR IR 

signals from carbon monoxide (CO) adsorbed from aqueous solution on Platinum (Pt)-coated 

ultrathin Indium-Tin-Oxide (ITO) electrodes. Variation of the electrochemical potential 

applied to the ITO electrode is demonstrated to shift the vibrational frequency of the 

immobilized CO with a rate of ~25 cm-1 V-1 on the basis of vibrational Stark-shift 

spectroscopy18,19. 

Figure 1 shows a schematic drawing of the home-built electrochemical ATR cell for ultrafast 

experiments. The assembly consists of a right-angle, single reflection CaF2 prism (top surface 

10x14 mm, Thorlabs), the reflecting plane of which is sputter-coated with an ultrathin layer of 

ITO that is used as the working electrode (vide infra). The ITO layer is incorporated in an 
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electrochemical circuit containing a potentiostat (IviumStat. Inc.) via a thin adhesive 

aluminum foil (Electron Microscopy Science Inc.) sandwiched between the cell and the ITO 

surface. Additionally, the potentiostat is connected to counter- and reference electrodes, 

which are assembled inside a home-built poly-ether-ether-keton (PEEK) sample flow-cell. 

The counter electrode consists of a Pt-coated Ti-wire (E-DAQ Inc.) and is centered in the 

chamber of the flow-cell. The reference electrode (Ag/AgCl, Biosense Inc.) is located at the 

front side of the PEEK cell.  

 

Figure 1. Sketch of the electrochemical ATR cell used in the ultrafast 2D ATR IR 

measurements. Carbon monoxide (CO) is adsorbed on ultrathin Platinum (Pt)-coated Indium-

Tin-Oxide (ITO) electrodes. Two collinear pump pulses are focused on the reflecting plane of 

a single reflection ATR cell, excite the adsorbed molecules and a delayed, weak probe pulse 

interrogates the dynamics. The electrochemical cell consists of a working electrode (WE), a 

counter electrode (CE) and a reference electrode (RE). The electrochemical circuit involving 

the potentiostat is not shown for clarity. Prism and cell elements are not drawn to scale for 

clarity.  

 

The sample cell assembly is mounted on top of the reflecting plane of the ITO/Pt-coated ATR 

prism using an O-ring (Teflon) to allow solvent flow above the working electrode. The O-ring 

has an inner diameter of 7 mm, which determines the area of the electrochemically active 
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surface. The sample chamber of the flow-cell is centered above the reflecting plane of the 

ATR prism and has an inner diameter of about 5 mm and a volume of about 0.5 cm3. In- and 

outlets of the sample cell (I/O) are located on opposite sides of the flow-cell and are 

connected to Teflon tubes (outlet not shown in Fig. 1).  

The ultrafast ATR arrangement is the same as employed previously for the 2D ATR IR 

spectroscopy of, e.g. organic monolayers (MLs) on thin metal layers.15,16 CaF2 is used as an 

ATR material due to its broad transparency in the mid-IR region (down to ~ 1100 cm-1). In 

addition, more widely applied ATR crystals such as Germanium, Silicon or Zinc-Selenide 

possess significantly lower bandgaps of electronic excitation, which make these materials 

susceptible to multi-photon absorption of the intense IR pulses. The comparatively low 

refractive index (n = 1.41) of CaF2 as compared to water (n = 1.31) makes it necessary to use 

a very large value for the angle of incidence (~85°) in order to satisfy total internal reflection 

conditions, as described previously17.  

Conductive layers as working electrodes on the ATR prism are obtained by use of ITO as an 

electrode material instead of thin metal layers such as Gold or Platinum, which are generally 

employed in stationary ATR IR spectro-electrochemistry.12–14 This is due to the better 

mechanical stability of ITO as opposed to noble metals which often require a second metal 

interlayer such as Chromium or Titanium for adhesion purposes.20–22 In addition, ITO exhibits 

a higher transparency of mid-IR light23 as compared to similarly thin metal layers. This is 

beneficial in ultrafast time-resolved spectroscopy since the lower absorption of ITO 

guarantees highest intensity of the IR light at the electrode-solvent interface, resulting in 

maximum signal intensity from the immobilized sample. The stronger stationary absorption of 

metal layers in the mid-IR also results in large background signals which obscure the sought 

signals from the adsorbates. Testing of different thicknesses in the range of 1 – 20 nm ITO in 



6 

 

the ultrafast 2D ATR IR experiment, we found that an average thickness of 2 nm yields the 

optimal balance between electrical conductivity and signal intensity.  

The ultrathin ITO layers are sputter-coated on the reflecting plane of the CaF2 ATR prism 

using Ar+-ion sputtering (Bal-Tec SCD500, ZMB, Zürich) at a working distance of 50 mm, a 

base-pressure of 8x10-5 mbar and a working pressure of 8x10-3 mbar. For the deposition of 

ITO, a sputtering current of 60 mA was used which results in a deposition rate of about 

0.15 nm s-1. The average thickness was in-situ monitored using a quartz microbalance. The 

sputtering process results in a structured surface of ITO nanoparticles (NPs) as determined by 

scanning electron microscopy analysis (SEM, Zeiss Supra 50 VP, Fig. 2). The SEM analysis 

reveals that the NPs (light grey) form a heterogeneous surface of islands with shortest 

dimensions of ~5 nm and longest extensions of 50 – 100 nm. These islands are partly 

interconnected with distances between the islands, which is estimated from the SEM images 

to be at maximum 5 nm (dark grey). In this form, the sputtered ITO layers have a typical 

resistance of about 1 kΩ measured with two tips of a tester separated by about 1 cm, which is 

sufficiently low for a quick equilibration of the electrochemical potential on the surface.  

Ultrathin (average thickness of 0.3 nm) Pt NPs are sputter-coated on top of the ITO electrodes 

using a sputtering current of 6 mA, which resulted in a deposition rate of about 0.02 nm s-1. 

Otherwise, the deposition parameters were the same for ITO (vide supra). Carbon monoxide 

(CO) saturated solutions were prepared by bubbling CO (4.8 grade, Pangas) for 15 minutes 

through a double distilled water solution containing 0.1 M NaClO4 (puriss. p.a., Sigma 

Aldrich) as electrolyte. The prepared CO solutions were flown across the electrode for a few 

minutes until adsorption was complete.17 
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Figure 2. Scanning Electron Microscopy (SEM) image of a sputter-coated, ultrathin ITO film 

(average thickness 2 nm) on the surface of a CaF2 substrate used as electrodes in the spectro-

electrochemistry experiments. The film consists of ITO nanoparticles (light grey) which are 

partly interconnected near the percolation threshold. The upper right inset shows a 

magnification of the lower right section by a factor of five.  

 

For 2D ATR IR measurements, the experimental setup is the same as described previously.15–

17 In brief, ~90 fs mid-IR pulses (~250 cm-1 bandwidth) centered around 2000 cm-1 are 

generated from an OPA,24 which is pumped by a 5 kHz regenerative amplifier at 800 nm. The 

output energy is about 1.5 µJ per pulse. The major portion is directed to a Mach-Zehnder 

interferometer to obtain coherent pump pulse pairs for 2D IR spectroscopy. About 5% of the 

OPA output is split off with a BaF2 wedge and used as probe and reference beams for 

balanced signal detection on a 2x32 pixel MCT array detector mounted to a spectrograph. 

Pump-, probe- and reference beams are focused on the backside of the reflecting plane of the 

ATR crystal by use of off-axis parabolic mirrors. 2D spectra are generated by scanning the 

coherence time (τ, Fig. 1) between the two pump pulses with a fixed population time (T, Fig. 

1) between the second pump pulse and the probe pulse. A succeeding Fourier-transformation 

of the oscillating signal part25 yields the 2D IR spectrum.  
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Linearly bound CO on Pt-NPs exhibits a strong IR absorption band, which sensitively 

responds to electrochemical potentials of the electrode.26,27 By changing the potential, the CO 

stretch frequency can be varied in a potential range of -0.5 to about +0.4V. In this potential 

range CO is stable on small Pt-NPs, but complete CO desorption is observed for potentials 

larger than +0.4 V.26,27 Fig. 3 shows 2D ATR IR spectra of CO on Pt for a population delay of 

2 ps and for three potentials, i.e. - 0.5 V (a), 0.0 V (b), and + 0.3 V (c). These signals have 

been obtained by subtraction of two separately measured spectra of the electrolyte solution on 

the ITO electrodes with an without CO.17 Note that the signal intensity of the + 0.3 V 2D 

ATR IR spectrum has been multiplied by a factor of 2.5 in order to compensate for the 

already partial desorption of CO at that potential.26–28 Ground-state bleach signals (blue) are 

predominately observed together with induced excited state absorption signals (red). The 

ground-state bleach signals are strongly elongated along the diagonal, indicating a large 

degree of inhomogeneity in the vibrational lineshape of the immobilized CO, as discussed 

previously17. Note that induced absorption signals appear both red and blue-shifted with 

respect to the ground-state bleach signal. These contributions stem from well-known 

dispersive lineshapes of ATR signals29,30 and their influence on 2D ATR IR spectra will be 

discussed in detail elsewhere. They are thus artificial signals which obscure the expected17 

exclusively red-shifted excited-state absorption signals. As the potential is varied from 

negative (-0.5 V, (a)) to positive (+0.3 V, (c)) values, the central frequency of the CO band 

changes between 2050 – 2070 cm-1. Recording the CO band maxima projected on the probe 

axis at a series of different potentials (Fig. 3 (d)) reveals that the central frequency (open 

circles) is shifted upon potential variation in a linear manner. A linear fit to the data gives a 

slope of ~25 cm-1 V-1 which is in good agreement with previous results (25 – 30 cm-1 V -1)26–

28. The origin of this spectral shift in known as a vibrational Stark-effect18,26,31,32 which is 

based on alterations of the vibrational properties and chemical binding properties of 

adsorbates in electric fields near electrodes.  
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Figure 3. 2D ATR IR signals of CO absorbed on ultrathin ITO/Pt electrodes for different 

potentials and a population time T = 2 ps. (a) -0.5 V, (b) 0 V, (c) +0.3 V. Note that the 2D 

spectrum in (c) is multiplied by a factor of 2.5 due to partial desorption of CO at that 

potential. (d) Spectral positions of the ground-state bleach (blue) CO band maxima projected 

on the probe axis against the applied potential. Open circles are experimental data, the solid 

red line is a linear fit with a slope Δ=25 cm-1 V-1. 

 

The 2D ATR IR measurements presented above demonstrate the applicability of our 

electrochemical cell in a vibrational Stark-shift experiment of surface-bound molecules. 

Making available ultrafast IR signals of samples at electrode interfaces is valuable in many 

ways. That is, spectro-electrochemistry in conjunction with time-resolved spectroscopy is an 

intense field of research for instance concerning redox-related bio-chemical processes14, 

electro-catalytic reactions33 or solar cells4. In these disciplines, very often questions emerge 

which relate to vibrational, orientational and energy-transfer dynamics of molecules in direct 
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contact with, or in the vicinity of electrode-solvent interfaces. Ultrafast IR spectroscopy 

allows one to resolve these dynamics with sub-picosecond temporal resolution.8–11 

Particularly 2D IR spectroscopy offers the possibility to directly investigate also inter-

molecular dynamics of molecules such as vibrational coupling34 or chemical exchange35, 

details of which are largely unexplored to date for interfacial systems, and in particular near 

electrodes. In this context, we note that 2D ATR IR spectroscopy has already been 

demonstrated to be sensitive enough to detect organic monolayers equipped with only low-

absorbing (ε < 200 M-1 cm-1) local vibrational probes even at sub-monolayer coverages.15,16  

Time-resolved spectroscopy at charged interfaces gained considerable attention in recent 

years.3,7,28,36–39 Most studies concerning vibrational spectroscopy employ ultrafast Sum-

Frequency-Generation (SFG) spectroscopy which is based on a combination of mid-IR and 

visible beams.3,7,28,36–39 However, recent reports also successfully demonstrated signals 

obtained exclusively in the mid-IR spectral region.40,41 Given the need of a solid state 

interface working as an electrode, experimental arrangements in transmission have not yet 

been reported for ultrafast spectroscopy to the best of our knowledge. Alternatively, one may 

use designs with either an external40,41 or an internal (i.e., ATR) reflection geometry.5,12–14 

When working with exclusively mid-IR light in external reflection conditions, the excitation 

light travels through the (generally) aqueous electrolyte solution twice which demands liquid 

layers of only a few microns in thickness, due to the broad and strong IR absorbance of 

water.40,41 This is less of an issue in external reflection SFG spectroscopy, since the signal 

light is up-converted to the visible spectral range at the interface. In ATR spectroscopy, in 

contrast, challenges concerning sample thicknesses are circumvented due to the very low 

penetration depth of the evanescent wave at the interface. The highest intensity of the 

evanescent field is present directly at the solid-liquid interface, giving rise to the well-known 

surface-sensitivity of ATR. As a rule of thumb, the evanescent fields produced at the interface 
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exhibit a penetration depth of generally about one wavelength of the applied light (here about 

5 µm).42 Moreover, the penetration-depth can easily be tuned to both smaller and larger values 

by varying the angle of incidence of the IR light.42 As a result of the properties of the 

evanescent wave, ATR is thus still applicable for the investigation of electrochemically active 

samples in bulk solution since the method depends on the third-order nonlinear susceptibility 

of the sample. Moreover, ATR is expected to be able to resolve dynamics from samples not 

only from the interface but also from, e.g. molecules within the Helmholtz double layer43. In 

this regard, a major future extension of the current status of our setup will involve the transfer 

of redox-active samples from bulk solution to organic monolayers15,16 in order to allow 

investigations of electro-catalytic reactions44 or potential dependent orientational dynamics45.  

In conclusion, we have presented a new spectroscopic method for measuring multi-

dimensional, time-resolved IR spectra from immobilized molecules at electrode-electrolyte 

interfaces. Using a combination of electrochemical ATR spectroscopy with ultrathin 

conductive layers and the recently developed 2D ATR IR spectroscopy, multi-dimensional 

vibrational Stark-shift spectra of carbon monoxide (CO) adsorbed to Platinum nanoparticles 

on ultrathin, nanostructured Indium-Tin-Oxide electrodes have been acquired. In a potential 

window of - 0.5 V - + 0.4 V the CO band was shifted at a rate of ~25 cm-1 V -1 and 

electrochemical desorption was observed for more positive potentials. We expect that ultrafast 

2D ATR IR spectro-electrochemistry will find broad application in various research fields 

which involve purposely charged interfaces as well as redox- and electron-transfer dynamics 

across solid-liquid interfaces.  
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