Effect of different cleaning methods of polyetheretherketone on surface roughness and surface free energy properties
Heimer, Sina; Schmidlin, Patrick R; Stawarczyk, Bogna (2016). Effect of different cleaning methods of polyetheretherketone on surface roughness and surface free energy properties. Journal of Applied Biomaterials & Functional Materials, 14(3):e248-e255.
Abstract
PURPOSE To determine the effect of different individual, laboratory and professional cleaning methods on the surface-roughness (SR) and surface free energy (SFE) of polyetheretherketone (PEEK), PMMA-based (PMMA) and composite (COMP) materials. METHODS 330 specimens of PEEK, PMMA and COMP (N = 990) were prepared and divided into the following cleaning protocols (n = 30/group): (i) individual prophylaxis using (ST) soft, (MT) medium-hard and (SOT) sonic toothbrushes, (ii) in-lab cleaning protocols consisting of (SY) Sympro cleaning system, (SS) SunSparkle, (UB) ultrasonic bath and (AP) Al2O3-powder device and (iii) professional prophylaxis applying (PS) Perio Soft-Scaler, (SO) Sonicsys, (AFC) Air Flow Comfort, and (AFP) Air Flow Plus. After each protocol SR (profilometer), SFE (contact angle devise) and surface topography (SEM) were measured. Data were analyzed using multivariate analysis, Kruskal-Wallis-H- and Mann-Whitney-U-test (p<0.05). RESULTS No impact of material on SR was observed (p = 0.443). Cleaning using conventional air-abrasion and powders (AP), followed by AFC produced higher SR values than the remaining methods (p<0.001). Within SFE, the cleaning method exerted the highest influence on SFE values (p<0.001, ηP2 = 0.246), closely followed by the polymer material (p<0.001, ηP2 = 0.136). PMMA and PEEK presented after cleaning lower SFE than COMP. PS, UB and SO showed lower SFE than specimens cleaned using SS, ST and SY. Cleaning using SY led to the highest SFE. CONCLUSIONS With regard to SR, all methods - with exception of conventional air-abrasion - can be recommended to clean PEEK. According to the SFE, PEEK may be an acceptable material providing even lower plaque accumulation rates than COMP. The field for more research is now open for scrutiny.
Abstract
PURPOSE To determine the effect of different individual, laboratory and professional cleaning methods on the surface-roughness (SR) and surface free energy (SFE) of polyetheretherketone (PEEK), PMMA-based (PMMA) and composite (COMP) materials. METHODS 330 specimens of PEEK, PMMA and COMP (N = 990) were prepared and divided into the following cleaning protocols (n = 30/group): (i) individual prophylaxis using (ST) soft, (MT) medium-hard and (SOT) sonic toothbrushes, (ii) in-lab cleaning protocols consisting of (SY) Sympro cleaning system, (SS) SunSparkle, (UB) ultrasonic bath and (AP) Al2O3-powder device and (iii) professional prophylaxis applying (PS) Perio Soft-Scaler, (SO) Sonicsys, (AFC) Air Flow Comfort, and (AFP) Air Flow Plus. After each protocol SR (profilometer), SFE (contact angle devise) and surface topography (SEM) were measured. Data were analyzed using multivariate analysis, Kruskal-Wallis-H- and Mann-Whitney-U-test (p<0.05). RESULTS No impact of material on SR was observed (p = 0.443). Cleaning using conventional air-abrasion and powders (AP), followed by AFC produced higher SR values than the remaining methods (p<0.001). Within SFE, the cleaning method exerted the highest influence on SFE values (p<0.001, ηP2 = 0.246), closely followed by the polymer material (p<0.001, ηP2 = 0.136). PMMA and PEEK presented after cleaning lower SFE than COMP. PS, UB and SO showed lower SFE than specimens cleaned using SS, ST and SY. Cleaning using SY led to the highest SFE. CONCLUSIONS With regard to SR, all methods - with exception of conventional air-abrasion - can be recommended to clean PEEK. According to the SFE, PEEK may be an acceptable material providing even lower plaque accumulation rates than COMP. The field for more research is now open for scrutiny.
TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.