Header

UZH-Logo

Maintenance Infos

Identification of antigen-specific B cell receptor sequences using public repertoire analysis


Trück, Johannes; Ramasamy, Maheshi N; Galson, Jacob D; Rance, Richard; Parkhill, Julian; Lunter, Gerton; Pollard, Andrew J; Kelly, Dominic F (2015). Identification of antigen-specific B cell receptor sequences using public repertoire analysis. Journal of Immunology, 194(1):252-61.

Abstract

High-throughput sequencing allows detailed study of the BCR repertoire postimmunization, but it remains unclear to what extent the de novo identification of Ag-specific sequences from the total BCR repertoire is possible. A conjugate vaccine containing Haemophilus influenzae type b (Hib) and group C meningococcal polysaccharides, as well as tetanus toxoid (TT), was used to investigate the BCR repertoire of adult humans following immunization and to test the hypothesis that public or convergent repertoire analysis could identify Ag-specific sequences. A number of Ag-specific BCR sequences have been reported for Hib and TT, which made a vaccine containing these two Ags an ideal immunological stimulus. Analysis of identical CDR3 amino acid sequences that were shared by individuals in the postvaccine repertoire identified a number of known Hib-specific sequences but only one previously described TT sequence. The extension of this analysis to nonidentical, but highly similar, CDR3 amino acid sequences revealed a number of other TT-related sequences. The anti-Hib avidity index postvaccination strongly correlated with the relative frequency of Hib-specific sequences, indicating that the postvaccination public BCR repertoire may be related to more conventional measures of immunogenicity correlating with disease protection. Analysis of public BCR repertoire provided evidence of convergent BCR evolution in individuals exposed to the same Ags. If this finding is confirmed, the public repertoire could be used for rapid and direct identification of protective Ag-specific BCR sequences from peripheral blood.

Abstract

High-throughput sequencing allows detailed study of the BCR repertoire postimmunization, but it remains unclear to what extent the de novo identification of Ag-specific sequences from the total BCR repertoire is possible. A conjugate vaccine containing Haemophilus influenzae type b (Hib) and group C meningococcal polysaccharides, as well as tetanus toxoid (TT), was used to investigate the BCR repertoire of adult humans following immunization and to test the hypothesis that public or convergent repertoire analysis could identify Ag-specific sequences. A number of Ag-specific BCR sequences have been reported for Hib and TT, which made a vaccine containing these two Ags an ideal immunological stimulus. Analysis of identical CDR3 amino acid sequences that were shared by individuals in the postvaccine repertoire identified a number of known Hib-specific sequences but only one previously described TT sequence. The extension of this analysis to nonidentical, but highly similar, CDR3 amino acid sequences revealed a number of other TT-related sequences. The anti-Hib avidity index postvaccination strongly correlated with the relative frequency of Hib-specific sequences, indicating that the postvaccination public BCR repertoire may be related to more conventional measures of immunogenicity correlating with disease protection. Analysis of public BCR repertoire provided evidence of convergent BCR evolution in individuals exposed to the same Ags. If this finding is confirmed, the public repertoire could be used for rapid and direct identification of protective Ag-specific BCR sequences from peripheral blood.

Statistics

Citations

Dimensions.ai Metrics
49 citations in Web of Science®
50 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 22 Mar 2019
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 January 2015
Deposited On:22 Mar 2019 16:06
Last Modified:22 Mar 2019 16:20
Publisher:American Association of Immunologists
ISSN:0022-1767
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.4049/jimmunol.1401405
PubMed ID:25392534

Download