Header

UZH-Logo

Maintenance Infos

The PhysiO Toolbox for Modeling Physiological Noise in fMRI Data


Kasper, L; Bollmann, S; Diaconescu, A O; Hutton, C; Heinzle, J; Iglesias, Sandra; Hauser, T U; Sebold, M; Manjaly, Z M; Pruessmann, K P; Stephan, K E (2017). The PhysiO Toolbox for Modeling Physiological Noise in fMRI Data. Journal of Neuroscience Methods, 276:56-72.

Statistics

Citations

Dimensions.ai Metrics
166 citations in Web of Science®
168 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 24 Feb 2017
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Language:English
Date:2017
Deposited On:24 Feb 2017 10:12
Last Modified:26 Jan 2022 12:02
Publisher:Elsevier
ISSN:0165-0270
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.jneumeth.2016.10.019
Project Information:
  • : FunderSNSF
  • : Grant IDP2ZHP1_151641
  • : Project TitleHow compulsive are you? Towards a computational psychiatric characterization of the compulsivity spectrum and its relation to serotonin