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Abstract 26 

The pervasive influence of human induced global environmental change affects biodiversity 27 

across the globe, and there is great uncertainty as to how the biosphere will react on short and 28 

longer time scales. To adapt to what the future holds and to manage the impacts of global change, 29 

scientists need to predict the expected effects with some confidence and communicate these 30 

predictions to policy makers. However, recent reviews found that we currently lack a clear 31 

understanding of how predictable ecology is, with views seeing it as mostly unpredictable to 32 

potentially predictable, at least over short time frames. However, in applied, ecology-related fields 33 

predictions are more commonly formulated and reported, as well as evaluated in hindsight, 34 

potentially allowing one to define baselines of predictive proficiency in these fields. We searched 35 

the literature for representative case studies in these fields and collected information about 36 

modeling approaches, target variables of prediction, predictive proficiency achieved, as well as 37 

the availability of data to parameterize predictive models. We find that some fields such as 38 

epidemiology achieve high predictive proficiency, but even in the more predictive fields proficiency 39 

is evaluated in different ways. Both phenomenological and mechanistic approaches are used in 40 

most fields, but differences are often small, with no clear superiority of one approach over the 41 

other. Data availability is limiting in most fields, with long-term studies being rare and detailed 42 

data for parameterizing mechanistic models being in short supply. We suggest that ecologists 43 

adopt a more rigorous approach to report and assess predictive proficiency, and embrace the 44 

challenges of real world decision making to strengthen the practice of prediction in ecology. 45 

 46 

Key words: predictive proficiency, forecast, hindcast, forecast horizon 47 
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1 Introduction 49 

Accurate predictions about the consequences of environmental change for natural populations, 50 

communities, and ecosystems would be valuable to inform conservation, management and 51 

adaptation strategies (Clark et al., 2001). This is even more evident when considering the current 52 

speed and magnitude of environmental change, for instance climate change, which has spurred 53 

scientific disciplines such as climatology to invest considerable effort in predicting the future 54 

(IPCC, 2014). 55 

 56 

Ecology has a long history of using explanatory prediction to test hypotheses and theories (Peters, 57 

1991; Resetarits and Bernardo, 1998). The purpose of anticipatory prediction, in contrast, is to 58 

provide useful information about the future state of a system (Mouquet et al., 2015). As such it is 59 

unimportant how anticipatory predictions are made (mechanistic versus phenomenological 60 

models), so long as they are useful. A culture of anticipatory predictions is only beginning to 61 

develop, and opinion about the success of such an enterprise is divided (Petchey et al., 2015). 62 

Some believe that medium- to long-term predictions in ecology are impossible due to factors such 63 

as model and parameter uncertainty, system complexity and non-ergodicity (i.e., not having the 64 

same behavior averaged over time as over all the system’s states), or long-term transients 65 

(Planque, 2016), making predictions “computationally irreducible” (Beckage et al., 2011). Others 66 

show that mechanistic models are able to make precise, accurate, and reliable predictions about 67 

a variety of state variables of complex ecosystems (Purves et al., 2008). General and specific 68 

statements about the ability to make useful anticipatory predictions about ecological variables 69 

could be facilitated by the considerations below (Petchey et al., 2015). 70 

 71 

First, one should not ask whether ecology is predictable or not, but about the predictive proficiency 72 

for a given response and a given time frame. It may be easy to predict that a 50% increase in a 73 

forest fragmentation index in certain locations will result in some bird species going locally extinct 74 

within the next 100 years. It would, however, be harder to predict the percentage of bird species 75 

that would become extinct, and still harder to predict exactly which bird species would become 76 

extinct. So ‘what is being predicted’ needs to be specified carefully, as well as the time frame of 77 

prediction (Petchey et al., 2015). 78 

 79 
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Second, coherence about how to measure predictive ability is desirable, yet there are many 80 

metrics available, some of which are redundant, whereas others measure distinct features of 81 

predictive ability (Olsen et al., 2016). Petchey et al. (2015) proposed that coherence and 82 

generality could be achieved by the ecological forecast horizon (EFH). The EFH is a quantitative 83 

tool to assess the predictive proficiency when observations are compared (e.g. using R2) to a 84 

particular model of the system. The forecast horizon is the time into the future for which forecasts 85 

can be made within a given predictive proficiency domain. Use of the EFH makes both time frame 86 

and predictive proficiency explicit. 87 

 88 

Third, a view of past and current predictive ability, and a vision for the future would be useful 89 

(Figure 1). In weather forecasting, predictive proficiency has continuously improved since the 90 

1980’s from about 80% to better than 95% in 2013 for forecasts three days ahead, while weekly 91 

forecasts improved from about 40% to 70% (Bauer et al., 2015). Some of the success in improving 92 

predictions is related to the meticulous monitoring of predictive success. Hence, knowing and 93 

critically evaluating predictive proficiency is essential, as it allows evaluation of our progress and 94 

enables identification of areas with deficient predictive proficiency. 95 

 96 

Fourth, ecologists need to understand where advances in predictive ability are most easily 97 

achieved, and what is required to make such advances. For example, one major difference 98 

between ecology and fields such as weather forecasting is the availability of data to check 99 

predictions. Ecological studies are often conducted over a given time frame (e.g., a thesis or 100 

research grant) and may be short compared to the relevant time scale of the study system (e.g., 101 

population dynamics of a particular animal or plant species). The vast majority of datasets in 102 

ecology fall into the category of short-term independent studies (Mouquet et al., 2015). 103 

Furthermore, datasets are often not collected with the specific purpose of making anticipatory 104 

predictions (Mouquet et al., 2015). This currently limits our ability to check the predictive success 105 

of particular forecasting techniques and to define the baseline of predictive success in ecology. 106 

 107 

While ecology in general is only beginning to develop the practice of prediction, related fields such 108 

as fisheries science that have to provide quantitative predictions to government agencies, may 109 

have already developed standardized reporting rules and rigorous means for assessing predictive 110 

proficiency from which ecologists can generally learn. We therefore selected fields and 111 

phenomena such as fisheries, epidemiology, eutrophication and algal blooms, ecotoxicology, 112 

forestry, and marine and terrestrial biogeochemistry and searched for representative case 113 
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studies. Importantly, these fields often deal with similar kinds and levels complexity. Given the 114 

vast literature in each field, our overview is necessarily incomplete; hence we informally (i.e., 115 

through discussion rather than quantitative analysis) review representative case studies. Our goal 116 

is to derive some insights as to why and when predictions succeed in these fields and produce 117 

some suggestions as how to strengthen the practice of prediction in ecology. 118 

 119 

 120 
Figure 1. Scenarios of how the ability to predict ecological dynamics may evolve in the future. Business as 121 
usual (shaded region) involves relatively sparse and uncoordinated efforts in ecological forecasting, and 122 
would result in no or slow increase in predictive ability, with occasional breakthroughs (not illustrated). 123 
Concerted effort is another scenario to transform ecological science into being primarily concerned with 124 
and coordinated to improve anticipatory predictions. The resulting increase in predictive ability is uncertain 125 
(hence multiple different lines). One scenario of limited advances in predictive ability despite increased 126 
efforts (dotted line) could result from there being hard limits to ecological predictability (e.g., computational 127 
irreducibility). Other scenarios (solid lines) showing faster increases in predictive ability, could result from 128 
advances in data availability and modeling, for example. 129 

  130 
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2 Predictions in ecology-related fields 131 

In this section we give an overview of fields, in no particular order, in which policy relevant 132 

predictions are made. To facilitate comparisons across fields, we use a common template to 133 

describe the predictive practice. In each subsection we first describe why prediction is important 134 

for the field and what type of predictions are made. We then discuss the predictive proficiency 135 

obtained and the types of models used in the representative case studies. Finally, we assess the 136 

importance of data availability and quality in the field, and highlight particular strengths and 137 

challenges for the practice of prediction (summarized in Table 1). 138 

Predictive models span a range of techniques, from simple extrapolation, to time series modelling 139 

using statistical or machine learning type models that can capture linear and non-linear patterns, 140 

to process-based models (e.g. individual-based models or population models based on first 141 

principles) that include biological mechanisms and environmental dependencies. Here we follow 142 

the rough separation of models into mechanistic (e.g. individual-based models) versus 143 

phenomenological models (including extrapolation, statistical and machine learning approaches) 144 

introduced by Mouquet et al. (2015). Whereas the latter are powerful at capturing patterns in the 145 

data, they do not capture explicit mechanisms and hence may predict poorly out of the range of 146 

data (Evans et al., 2013). On the other hand, process-based models are expected to work better 147 

under novel conditions, provided the key mechanisms are correctly included. Approaches also 148 

differ in terms of the data required for parameterization. Process-based models tend to be more 149 

demanding in terms of the data required, whereas phenomenological approaches often are 150 

applied directly to the state variable (e.g. time series analysis of population sizes). 151 

2.1 Fisheries 152 

Anticipatory predictions in fishery science are needed to inform management and conservation 153 

as fish stocks are depleted on a global scale. According to Garcia and Graininger (2005) 52% of 154 

stocks are fully exploited and 16% overfished. Fish stock assessments provide guidelines for 155 

sustainable management of focal fish species, and are based on catch data, scientific surveys 156 

and biological information about the species. Important predicted quantities are the total 157 

population size or biomass to inform maximum sustainable yield, the age structure of a stock, and 158 

its fecundity.  159 

 160 
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Since the 1950’s very simple population dynamic models have been used to make forecasts of 161 

abundance based on the single-species formalism of Beverton and Holt (1957). These models 162 

usually consider only age or stage structure, with multiple cohorts. Stock-recruitment relationships 163 

such as the Ricker or Beverton-Holt curve are used to predict the recruitment of a harvested 164 

population using information on its spawning biomass. Cury and colleagues (2014) have found 165 

low explanatory power of the stock-recruitment relationship, explaining only 8.8% of the variation 166 

in a global dataset of stock-recruitment curves, even though it is still widely used in fish stock 167 

assessments. They suggested that a better consideration of density-independent factors (e.g. 168 

species interactions and temperature) may increase the amount of variation explained.  169 

 170 

Moving beyond simple linear relationships, non-linear time series analysis has gained traction in 171 

fishery sciences. One promising technique is empirical dynamic modeling (EDM) as introduced 172 

by Sugihara (1994). Recent papers show application of the method to forecast population 173 

dynamics (Glaser et al., 2014), and unravel environmental dependencies of population dynamics 174 

(Deyle et al., 2013; Hsieh et al., 2005). The methodology can deal with non-linearity and readily 175 

produces forecasts from time series of abundance for which relatively long-term records exist in 176 

fisheries. Glaser et al. (2014) found that about 70% of 206 time series of fish and marine 177 

invertebrates had significant predictable structure, but that the average predictive proficiency 178 

(using the correlation coefficient ρ) was only about 0.39. They concluded that short-term (e.g., 1 179 

year forecasts) are feasible, whereas mid to long-term forecasts (2-10 years) are not reliable yet. 180 

Francis et al. (2005) used a more traditional generalized additive modeling approach to model 181 

relative abundance and occurrence of individual species. They report that models performed 182 

reasonably well (ρ > 0.5) on only 4 out of 12 fish species; however, presence was predicted with 183 

greater success (8 out of 12). These authors also reported an independent assessment, using a 184 

different dataset collected later, in which 5 out of 8 species were predicted with a ρ larger than 185 

0.5. 186 

 187 

It has been suggested that predictions of fish stocks could be improved by a more ecosystem-188 

focused fishery management that includes interactions between species and human exploitation 189 

(Travis et al., 2014). Olsen et al. (2016) performed a rigorous assessment of the Northeast U.S. 190 

Atlantic marine ecosystem model using 40-year hindcasts and 10-year forecasts using different 191 

metrics of predictive proficiency (including correlation and different error measures). Twenty-two 192 

ecosystem indicators were evaluated, including emergent properties of the model (e.g., average 193 

trophic position). Model performance had large variation across species, but several of the target 194 
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species showed correlations greater than 0.5 in both hindcast and forecast skill. Root mean 195 

squared error for the normalized biomass data ranged between 0.1 and 0.8. 196 

 197 

Data for fish assessments is often based on fish landings (sold fish biomass) or portside 198 

assessments of catch. Whereas the former has the advantage of capturing the effects of a major 199 

human intervention, they can be confounded by complex human behavior, including under-200 

reporting of catch (Glaser et al., 2014). Time series of abundance can be of considerable length 201 

(> 50 years) in fisheries, facilitating data-driven approaches, however, detailed data to 202 

parameterize more process-based models is not so readily available (Travers et al., 2007). More 203 

explicit consideration of biotic interactions and environmental drivers would probably lead to better 204 

predictions (Brander, 2003; Travis et al., 2014). A general shift towards an ecosystem-based 205 

fisheries management approach, based on trophic web models with many components and 206 

across levels of organization, can be observed (e.g. Travers-Trolet et al., 2014). These models 207 

still suffer from over-simplifications, such as describing interactions in marine communities as 208 

largely unidirectional trophic relationships instead of fully embracing their complexity (Travis et 209 

al., 2014).  210 

 211 

The use of forecasting centered methods such as EDM, as well as the use of ecosystem models, 212 

provide a clear baseline for the level of predictive proficiency in fisheries. Forecasting proficiency 213 

with of rhos about 0.4 – 0.5 are obtained with different methodologies on population and 214 

ecosystem level. 215 

2.2 Epidemiology 216 

The public health implications of infectious diseases renders epidemiology an important field for 217 

frequent and policy relevant predictions. Important targets of prediction are: the likelihood of an 218 

outbreak of a disease (Woolhouse, 2011), the timing and amplitude and shape of an epidemic 219 

(Grenfell et al., 2002), and the outcome of specific interventions (Grenfell and Keeling, 2008).  220 

 221 

The SIR model developed by Kermack and McKendrick (1927), in which the population is divided 222 

into susceptible, infective and recovered individuals, forms the basis of many epidemiological 223 

models. The crucial parameter of the model, R0, predicts the spread of the epidemic, i.e., when 224 

R0 > 1, the infection will spread in a population. A recent example of epidemiological prediction is 225 

the occurrence of dengue during the 2014 FIFA World Cup in Brazil. Lowe et al. (2014) predicted 226 



  9

a high risk of acquiring dengue in Brazil, providing probabilistic forecasts of risk based on seasonal 227 

climate forecasts. Aguiar et al. (2015) also analyzed the epidemiological data, taking into 228 

consideration population densities in the twelve host cities, and the seasonality of mosquitoes. In 229 

contrast, they predicted a low infection rate during the World Cup due to the incorporation of 230 

different drivers, which was confirmed later (M. Aguiar et al., 2015). Another predictive success 231 

in epidemiology was the foot-and-mouth-disease outbreak in Great Britain in 2001, which yielded 232 

detailed insights into the disease dynamics and a high quality data set (Grenfell and Keeling, 233 

2008; Woolhouse, 2011). A statistical model (logistic regression) and individual-based models 234 

were used in hindsight to check their ability to predict which farms were at risk during the 2001 235 

outbreak (Woolhouse, 2011). The statistical model was found to predict the risk of becoming 236 

infected slightly better than the dynamic model (Woolhouse, 2011). Measles dynamics are 237 

emblematic cases of successful prediction due to characteristic recurrent cycles in large 238 

population centers and occasional breakouts in smaller communities (Bjørnstad et al., 2002). The 239 

authors predicted cases of measles by fitting a time-series SIR model (TSIR, Grenfell et al., 2002) 240 

to data from 60 UK communities and reported impressive short-term (two weeks ahead) mean R2 241 

of 0.85 by comparing predicted to observed cases. The R2 ranged from 0.98 – 0.92 for large cities, 242 

and was still reasonably high (0.74) for small communities. Extensions of measles modeling to 243 

small communities that have highly stochastic dynamics still achieved R2 of 0.86 to 0.55, with 5 244 

out of 6 communities scoring higher than 0.73 (Caudron et al., 2015). A recent review gives a 245 

comprehensive account of the predictability of influenza outbreaks, comparing time series 246 

modeling, individual-based, compartmental and metapopulation models (Nsoesie et al., 2014). 247 

Three studies predicted the magnitude of influenza activity and reported correlation coefficients 248 

between 0.58 and 0.94 (Nsoesie et al., 2014), whereas mechanistic approaches were evaluated 249 

in terms of observations falling within the confidence intervals of the model. The use of different 250 

measures hence hampers direct comparisons between the predictive proficiency among 251 

approaches. 252 

 253 

Epidemiology has excellent long-term records of disease-incidence through space and time. This 254 

can be used for validation and testing models, including the influence of measures such as 255 

vaccination, quarantining and vector control. Epidemiology also benefits from new data sources, 256 

such as internet search queries. A correlation between predicted and observed influenza cases 257 

of 0.96 was obtained (Ginsberg et al., 2009), highlighting the potential of these techniques in 258 

improving forecasts and decreasing time delays. As these models rely on correlations between 259 

search patterns and disease symptoms, input data have to be reviewed carefully to protect 260 
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against false alerts (Woolhouse, 2011). However, issues related to data quality and availability 261 

are not unique to new predictive approaches in epidemiology, but apply equally to more traditional 262 

approaches. Aguiar et al. (2014) describe a situation where datasets based on different 263 

interpretations of official documents created divergent predictions of disease dynamics. Another 264 

problem is that at an international level some countries may be unwilling to share the data with 265 

the World Health Organization (Woolhouse, 2011), exacerbating the genuine lack of data for 266 

many other diseases. 267 

 268 

Epidemiology shows impressive examples of forecast proficiency with R2 ranging above 0.9 and 269 

even above 0.7 in more difficult settings (e.g. smaller communities, larger influence of 270 

stochasticity). Nevertheless, the review by Nsoesie et al. (2014) shows that even when targets of 271 

prediction are well defined, the use of different measures of forecast proficiency can hamper 272 

conclusions regarding the state of the art of prediction. 273 

2.4 Eutrophication and algal blooms 274 

Eutrophication models predict the availability of key nutrients (nitrogen, phosphate), 275 

phytoplankton biomass (i.e. chlorophyll a concentration) or oxygen availability in aquatic systems. 276 

Excessive nutrients in aquatic system can lead to phytoplankton blooms, especially cyanobacteria 277 

(Conley et al., 2009). As some of the organisms can harm humans and ecosystems, 278 

environmental monitoring aims to predict harmful algal blooms. 279 

 280 

Early studies of N and P fertilization were successful at predicting that fertilization with P would 281 

lead to dominance by N-fixing phytoplankton, but not which species would be dominant 282 

(Schindler, 1977). Modern eutrophication models include a significant, relatively well understood 283 

hydro-dynamical component. Nevertheless, this results in eutrophication models being 284 

computationally expensive, requiring substantial data to calibrate, often to the detriment of 285 

biological detail (Robson, 2014a). Arhonditsis and Brett (2004) compiled a list of 153 mechanistic 286 

aquatic biogeochemical modelling studies. Models could generally reproduce the temperature 287 

and dissolved oxygen time series well, with R2 values of 0.93 and 0.7, respectively, and median 288 

relative error <10%. In contrast, state variables relevant to eutrophication—nutrients and 289 

phytoplankton—were only moderately predictable, with R2 values ranging from 0.4 to 0.6, and 290 

median relative errors of around 40%. The models predicted the dynamics of bacteria and 291 

zooplankton even less well. Trolle et al. (2014) compared the ability of three of the most widely 292 
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used aquatic ecosystem models—DYRESM-CAEDYM (Hamilton and Schladow, 1997); PCLake 293 

(Janse, 1997) and PROTECH (Elliott et al., 2010) to predict chlorophyll a concentrations in lakes. 294 

No model performed particularly well when predicting the day-to-day chlorophyll concentrations 295 

(max R2 0.33, minimum relative error 103%), but predictions of monthly means were reasonable 296 

(max R2 0.62, minimum relative error 77%).  297 

 298 

Jacobs et al. (2014) modelled the presence, abundance and potential virulence of Vibrio vulnificus 299 

in marine surface waters. They used a logistic regression model based on the output of 300 

ChesROMS, a three-dimensional model that simulated the circulation and physical properties of 301 

the estuary (sea surface height, temperature, salinity, density and velocity). The model achieved 302 

82% classification success in the training data based on a set of environmental variables. The 303 

same variables were also useful in predicting abundance (low versus high) with concordance of 304 

92% (R2 of frequency of occurrence on validation high: 0.94 - 0.98). Froehlich et al. (2013) 305 

modelled the presence of the whole Vibrio genus in estuarine waters. They used a mechanistic 306 

model based on hydrodynamics, growth and death rates and a statistical model (multiple linear 307 

regression) based on environmental parameters (temperature and salinity) to predict Vibrio. This 308 

allows direct comparison of predictive abilities of statistical and mechanistic models. The 309 

mechanistic model was based on the Environmental Fluid Dynamics Code (Hamrick, 1992) and 310 

predicted physical environmental parameters such as salinity and temperature very well (R2 86.6 311 

and 97.1, respectively). The mechanistic model achieved 63% of explained variation for log-312 

transformed abundances, timing and magnitude of the peak abundance were mostly well 313 

predicted. The statistical model explained 48% of variation in abundance. 314 

 315 

Mechanistic eutrophication models require many physical inputs, including hydrodynamic data, 316 

weather conditions, nutrient influx and outflow, as well as water quality parameters and ecological 317 

inputs. Data availability on the biological components is likely to increase as new monitoring 318 

schemes based on environmental genetic data becomes more widely used (Paerl et al., 2003). 319 

This may enable real-time microbiological assessments of aquatic systems in the future. 320 

 321 

Eutrophication models tend to make good predictions when they ‘have strong physical drivers’ 322 

(Robson, 2014b). Both Froehlich et al. (2013) and Arhonditsis and Brett (2004) show that physical 323 

properties of the environment are often well captured, whereas the biological layer has 324 

considerably lower predictive proficiency. In the N and P fertilization studies, both the behavior of 325 

nutrients and the behavior of the phytoplankton community as a whole were fairly law-like. 326 



  12

However, exactly which N-fixing species would dominate was not so predictable, because 327 

detailed knowledge about the individual species was lacking (Schindler, 1977). Nevertheless, 328 

reported levels of R2 for phytoplankton dynamics (range 0.3-0.8) indicate low predictive 329 

proficiency even for the biotic components. The ensemble approach used by Trolle et al. (2014) 330 

can improve proficiency and indicate prediction uncertainty, and is commonly used to compare 331 

climate (Murphy et al., 2004) and meteorological models (Houtekamer et al., 1996; Tracton and 332 

Kalnay, 1993).  333 

2.5 Ecotoxicology 334 

Ecotoxicology aims to predict the movement of toxicants in the environment, their uptake and bio-335 

concentration in organisms, and the resulting population level effects. Contaminant fate models 336 

describe the fate and distribution of contaminants in the aquatic system. Important processes are 337 

transport (flow and dispersion), degradation, volatilization, sorption, sedimentation and 338 

resuspension.  339 

 340 

The predictive ability of several models simulating the bioconcentration of organic chemicals by 341 

fish has been reviewed by Barber (2003). Based on the properties of various organic chemicals, 342 

these models successfully predicted the bioconcentration of chemicals in tissues through time. 343 

Progress in extrapolating the effects of toxicants on individuals to the population level is being 344 

made through individual-based models. Dynamic Energy Budget (DEB) theory extrapolates the 345 

effects of toxicants measured at the individual level to the population level. DEB is based on first 346 

principles in bioenergetics and uses a common model structure for all species. Martin et al. (2013) 347 

present the general approach for animals, and give an example using Daphnia magna exposed 348 

to an herbicide. The model captured the density dynamics and changes in the size structure 349 

without fitting or calibration at the population level. It therefore successfully extrapolated to 350 

environmental conditions not included in the parameterization process. 351 

 352 

Eco-toxicological data are mostly collected in controlled laboratory studies where lethal effects of 353 

toxicants on individuals are measured. Detailed physiological models of toxicant concentration in 354 

individuals hence exist, but the challenge is to predict the effects on higher levels of organization. 355 

Individual-based models and DEB theory in particular show promise for predicting across levels 356 

of organization and take advantage of the rich data sources available on the individual level. In 357 

addition, accidents can provide important and realistic situations to predict contaminant spill in 358 
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the environment; e.g., accidental discharge of nitrobenzene in 2005 in the Songhua River, China 359 

(Lei et al., 2008). Ecotoxicology, with its strong foundation in physiology relies a lot on mechanistic 360 

modelling, rather than more phenomenological approaches. However, it has been suggested that 361 

machine learning has considerable promise in detecting individual level biomarkers based on 362 

gene expression profiles (Vandersteen, 2011). 363 

2.6 Forestry 364 

Two primary targets of prediction in forestry are forest succession and forest productivity. 365 

Foresters need predictions to take long-term decisions regarding the forest composition in the 366 

face of climate change, invasion by non-native trees, and forest fragmentation, while at the same 367 

time managing forests for production. Forests also play an important role in the carbon cycle and 368 

hence in the response of the global climate system to carbon dioxide emissions (Purves and 369 

Pacala, 2008). 370 

 371 

Individual-based forest gap models have been used to predict forest succession, composition, 372 

and effects of environmental changes on forests from their inception in the early 1970’s with the 373 

development of JABOWA (Botkin et al., 1972). They use data on individual trees modified by 374 

environmental conditions, including growth, competition through local interactions (shading), and 375 

reproduction. Such models have successfully reproduced the species composition of old-growth, 376 

semi-natural forests (Purves et al., 2008). Ngugi and Botkin (2011) used the Ecosystem Dynamics 377 

Simulator (EDS), based on JABOWA-II (Botkin, 1993) in projecting growth dynamics of mature 378 

remnant Australian brigalow forest communities and the recovery of brigalow thickets. The model 379 

was parameterized for 34 tree and shrub species and tested with independent long-term 380 

measurements. It closely approximated actual development trajectories of mature forests and 381 

regrowth thickets. Changes in species composition in remnant forests were projected with a 10% 382 

error. Basal area values observed in all remnant plots ranged from 6 to 29 m2 ha-1 and EDS 383 

projections between 1966 and 2005 (39 years) explained 89.3 (+/- 1.8)% of the observed basal 384 

area of the plots. 385 

 386 

Individual-based forest models are often quite complex and hence analytically intractable. 387 

Recently the perfect-plasticity approximation (PPA) was developed as a model of forest dynamics 388 

(Purves et al., 2008). It is based on individual tree parameters, including allometry, growth, and 389 

mortality. For eight common species in the US, timing and magnitude of basal area dynamics and 390 
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ecological succession on different soil types were found to be accurate, and predictions for the 391 

diameter distribution of 100-year-old stands had qualitatively correct shape (Purves et al., 2008). 392 

 393 

A serious obstacle for testing predictions of forest succession is that this process can take 394 

centuries to reach its final state. For that reason, 'space-for-time' substitutions have been used 395 

(Pickett, 1989). Clebsch and Busing (1989) empirically measured forests after 63 years of 396 

agricultural abandonment. Forest composition at 63 years was used as starting condition for a 397 

forest gap succession simulator (FORET). The prediction (300 years ahead) matched the state 398 

of a nearby old-growth forest.  399 

 400 

Phenomenological approaches have been used to model the geographic distribution of 30 401 

different tree species, based on environmental data, in Switzerland (Guisan et al., 2007). Ten 402 

different methods (ranging from GLMs to GAMs, MaxEnt and regression trees) were compared 403 

using the area-under-the-curve metric (AUC >0.9 means good skill, <0.7 poor skill). Predictive 404 

proficiency varied among species more than among modeling technique, so that most of the 405 

species’ distributions were predicted reasonably well (AUC > 0.7) with at least one of the 406 

techniques. 407 

 408 

It is not surprising that the economic importance of forests has led to abundant data, from 409 

individual tree growth to the dynamics of forest stands. Individual-based models require detailed 410 

information such as light transmission and seed dispersal kernels for parameterization, but have 411 

proven to be successful at local scales (Purves et al., 2008). However, currently available data 412 

from long-term forest monitoring programs is often still insufficient to implement parameter-rich, 413 

process-based models (Evans and Moustakas, 2016). New developments such as the PPA may 414 

circumvent some of these limitations, as they require less data to upscale in a computationally 415 

efficient manner. Forest inventory data, where sample plots are measured on a regular basis 416 

(every 5-10 years), are becoming increasingly available and can be used as input for PPA (Purves 417 

et al., 2008). 418 

 419 

Forestry can be considered a quite successful predictive science. Predictive proficiency is 420 

assessed by the ability to capture patterns (e.g. size distributions, growth dynamics) rather than 421 

metrics (e.g. R2). The need for long-term predictions has led to original approaches (e.g. space-422 

for-time) to test models. Modelling approaches that aim to predict across levels of organization 423 
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(individual growth), stand dynamics (population), compositional changes (community), as well as 424 

ecosystem properties are needed, and IBMs have shown some promise in achieving this goal. 425 

 426 

2.7 Terrestrial and marine biogeochemistry 427 

Biogeochemistry encompasses linked physical, chemical, geological, and biological processes in 428 

the environment at all scales (Schlesinger, 1991). Biogeochemical models are key components 429 

in predictions of climate change and in understanding the feedbacks with the biosphere. They 430 

therefore have very important implications for global policy. For instance, global vegetation 431 

models are important components of climate change models (Purves and Pacala, 2008).  432 

An important goal of terrestrial biogeochemical models is to predict carbon storage as a function 433 

of increasing CO2 in the atmosphere. Predictions of four global terrestrial ecosystem models 434 

regarding the terrestrial carbon storage from 1920 to 1992 were compared (McGuire et al., 2001). 435 

These models, which have a spatial resolution of 0.5”, have been calibrated and tested on small 436 

scales. In the tests, atmospheric CO2, climate, and cropland extent were used as inputs. Among 437 

other predictions, three of the four models predicted net release of terrestrial carbon up to 1958, 438 

and all four predicted net uptake after 1958. At local spatial scales, the CENTURY model is 439 

representative of terrestrial biogeochemistry models, which are based on relationships between 440 

climate, human management (fire, grazing), soil properties, plant productivity, and decomposition 441 

(Parton et al., 1993). CENTURY is a general ecosystem level model that simulates plant 442 

production, soil water fluxes, soil organic matter dynamics and nutrient cycling for grassland, 443 

forest, savanna and agroecosystems (Parton et al., 1993). It has been tested using observations 444 

from many temperate and tropical grasslands around the world. The results show that soil C and 445 

N levels can be simulated to within +/- 25% of the observed values (100 and 75% of the time, 446 

respectively) for a diverse set of soils.  447 

 448 

Models in marine biogeochemistry have been developed to understand and predict biogenic 449 

cycles (carbon, nitrogen, phosphorus, silica, etc.) over broad temporal and spatial scales. They 450 

were also used to understand the drivers of spatio-temporal variation in primary production. Najjar 451 

et al. (2007) compared twelve models predicting global primary production, sea surface 452 

concentration of dissolved organic carbon and seasonal oxygen fluxes. The results agreed with 453 

empirical data, but predictions were very sensitive to the circulation and to the mixing layer depth. 454 
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Carr et al. (2006) made predictions of global primary production on the basis of satellite data, and 455 

the predictions varied within a factor of 2. For comparison, 24 biogeochemical models were used 456 

in the same regions, with the result that the predictions encompassed the same ranges as the 457 

empirical estimates, and shared the property of a strong divergence in the Austral Ocean, in the 458 

polar and subpolar regions and in eutrophic regions. A follow-up study compared 21 ocean color 459 

models and 9 biogeochemical models in their ability to predict primary production in the tropical 460 

Pacific region from 1983-1996 (Friedrichs et al., 2009). Models varied widely in predictive 461 

proficiency, but this was not related to model type or complexity. Saba et al. (2010), used 36 462 

models (22 ocean color models using spectral analysis to estimate water constituents, including 463 

chlorophyll-a) and 14 biogeochemical models to calculate the primary production in two regions 464 

from 1989 to 2004. 90% of these models underestimated the primary production, with the bias of 465 

the biogeochemical models being twice that of the ocean color models, and only 2% of the 466 

biogeochemical models were able to reproduce the primary production increase observed in 467 

these stations (2% per year), indicating it may take time for marine biogeochemical simulation 468 

models to catch up with more direct observational indicators such as ocean color. 469 

 470 

The broad spatio-temporal scales of biogeochemical cycles make reliable measurements difficult. 471 

Primary sources of data could be reconstructions of biogeochemical cycles preserved in paleo-472 

records. Remote sensing techniques have promise in improving data availability for global 473 

biogeochemical models and increasingly provide data for more local scales (Asner and Vitousek, 474 

2005). 475 

 476 

Biogeochemical models are often based on first principles (laws of thermodynamics and 477 

chemistry), and hence some predictions can be made with confidence on these aspects. The 478 

biotic component of these models is dominated by plants and decomposers, which allows 479 

reasonable predictions to be made about what to expect when environmental change occurs, or 480 

when different ecosystems are studied. Nevertheless, the complexity of the global cycles and the 481 

feedbacks between abiotic and biotic processes pose great challenges to accurate prediction. 482 

  483 
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3 Discussion 484 

Our review of the practice of prediction in ecology-related fields showed that some fields achieve 485 

relatively high predictive proficiency. Both phenomenological and mechanistic approaches are 486 

used in most fields, but when direct comparisons are made, differences are often small, with no 487 

clear superiority of one approach over the other. Comparisons are hampered by proficiency being 488 

evaluated in many different ways: different metrics are used within and among fields, and 489 

predictive proficiency is judged differently for phenomenological and mechanistic models. Data 490 

availability is limiting in most fields, with long-term studies being rare, and detailed data for 491 

parameterization of mechanistic models being in short supply. Learning from these examples, we 492 

give suggestions as to how we may improve the practice of prediction in ecology, summarized in 493 

the “forecasting loop” (Figure 2). 494 

 495 

The practice of prediction in ecology-related fields 496 

We found that truly anticipatory predictions are not very common in applied fields, even though 497 

some are reported to government agencies (e.g. epidemiology, fisheries), with hindcasts more 498 

commonly used to assess predictive proficiency. Epidemiology is one of the most predictive fields, 499 

with high predictive proficiency achieved (R2 > 0.9). Whenever new pathogens arise (e.g. Zika 500 

virus) anticipatory predictions are made, evaluated in real-time, and also hindsight (e.g., 501 

evaluation of models used during the foot and mouth epidemic in the UK in 2001). Another 502 

indication for the level of sophistication obtained in epidemiology is the integration of evolutionary 503 

processes in predictive models (Gandon et al., 2016). 504 

 505 

Fisheries also report yearly forecasts to government agencies; however, we are not aware of 506 

rigorous tests of truly anticipatory predictions. Nevertheless, hindcasting using a 507 

phenomenological approach provides a baseline of average predictive proficiency (rho 0.4) in 508 

fisheries for different time frames (Glaser et al., 2014). Lower proficiency may be due to 509 

uncertainty about the abundances, or time lags between forecasts and the reporting of stock 510 

assessments (Brander, 2003). 511 
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 512 
Figure 2. The “forecasting loop” to improve the practice of prediction in ecology. Improved data availability 513 
and quality will help to develop predictive models (in the widest sense) that are not limited by insufficient 514 
data quality. Both hindcasting and forecasting skills of these predictive models will be tested rigorously to 515 
quantify the current state of predictive proficiency. Such evaluations are facilitated by making data, models 516 
and model output available in a common database. Importantly, improvements in predictive proficiency are 517 
expected to be greater if forecasts are made and reported on a regular basis (indicated by the large loop). 518 
Inner loops illustrate that regular and long-term data are important and provide opportunity to evaluate 519 
forecasts. The goal is to provide accurate, precise and reliable predictions to policy makers and stake 520 
holders to inform about and adapt to recent challenges such as global environmental change. 521 

 522 

Generally, we found that models dominated by basic physical and chemical processes are often 523 

better at predicting than models that do not have strong drivers. Epidemics with strong seasonal 524 

forcing and eutrophication are good examples. Eutrophication models show high R2 for 525 

environmental properties, but considerably lower skill for the biotic component. This indicates that 526 

the properties of the biota are still not sufficiently well understood, and/or that biological processes 527 

involve complexities inherently more difficult to model. Forestry predictions are successful when 528 

a lot is known about the effects of environmental conditions on the survival and growth of 529 

individuals (especially shade tolerance), and their life-cycle characteristics. The relative 530 

importance of physical and biotic drivers hence may contribute to the predictability of a variable. 531 
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Whereas physical processes often arise from a single mechanism (or a small number thereof), 532 

biological processes often arise from a large, complex system of interacting sub-processes. While 533 

these sub-processes may be individually mathematically and experimentally tractable, the 534 

complete system rarely is. Consequently, models of biological processes are typically coarse-535 

grained approximations of these complex systems with a resulting increase in uncertainty. By 536 

contrast, physical processes can be much more completely characterised and thus are more 537 

predictable.  538 

 539 

We divided models into phenomenological and mechanistic models. It is often argued that 540 

mechanistic models are superior under changing conditions if they capture the correct 541 

mechanisms (Evans et al., 2013; Stillman et al., 2015). A few studies compared mechanistic to 542 

phenomenological approaches, with phenomenological models often being equal on average 543 

(inferior performance in eutrophication models, but slightly better predictions in some 544 

epidemiology studies). For the time being it seems that no approach is clearly superior in terms 545 

of predictive proficiency, but this may be because challenging and novel predictions are rarely 546 

formulated. Therefore, we should be agnostic about the approach and rigorously assess the 547 

accuracy and precision of our predictions. Comparing mechanistic and phenomenological 548 

approaches, we also found that predictions are seldom evaluated with a set of standard metrics, 549 

which can reveal complementary aspects of predictive proficiency. Mechanistic models are more 550 

often judged by qualitative assessments (e.g. do observations fall within the model confidence 551 

intervals), whereas phenomenological approaches usually rely on single metrics such as R2 or 552 

correlation coefficients. Meta-analyses of predictive proficiency would be facilitated by either using 553 

a standard set of evaluation metrics, including deviations between predictions and observations 554 

(e.g. RMSE) and the range of predicted values (e.g. the specificity of predictions). 555 

 556 

Some technical issues regarding the application of complex simulation models to prediction 557 

should also be mentioned. The accuracy of a prediction is not only contingent on the 558 

parameterization of mechanistic equations capturing relevant processes (parameter sensitivity), 559 

but even small, purely quantitative, errors in parameterization can lead to inaccuracy of 560 

predictions if the system is structurally sensitive (Adamson and Morozov, 2014; Cordoleani et al., 561 

2011; Wood and Thomas, 1999).  562 

The relevant outputs of mechanistic models are also usually the asymptotic dynamics. For that 563 

reason, simulations usually include an initial period of considerable length to get rid of transient 564 

effects of arbitrary initial conditions. However, long-term transients have been found in spatio-565 
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temporal predator-prey models that last far longer than the effects of initial conditions (Banerjee 566 

and Petrovskii, 2010; Rodrigues et al., 2011). Therefore, more attention should be paid to 567 

transient behaviors, to determine whether they are spurious or, possibly in some cases, important 568 

parts of predicted behavior (Hastings, 2004, 2001). 569 

The role of data in ecological prediction 570 

The quality and availability of data is essential for developing a predictive science, and better data 571 

archiving practices will improve access to data (Mouquet et al., 2015). High quality data are 572 

needed to parameterize models and test explanatory predictions, which help us to understand 573 

systems. Low quality data compromise our ability to test models rigorously, as it is unknown 574 

whether predictions are incorrect due to inappropriate data or to poorly specified models (i.e., due 575 

to model or parameter uncertainty). Simulated data can be very valuable for discovering whether 576 

modeling approaches are able to recover the parameters that generated the data after adding 577 

moderate levels of noise and are commonly used to show the usefulness of the modeling 578 

technique (e.g. Pascual and Kareiva, 1996). However, data collectors need to know the noise 579 

levels where modeling approaches will fail to recover signals from data: this will help design 580 

measurement and sampling schemes guaranteeing appropriate data for predictive models. Other 581 

important data properties are sampling frequency, duration of time series, and spatial replicates. 582 

More dialogue between modelers and practitioners in terms of data collection is clearly needed 583 

and could foster the collection of data specifically for the purpose of prediction. Micro- and 584 

mesocosms are widely used and very well suited tools to generate time-series of population, 585 

community and ecosystem dynamics (Altermatt et al., 2015; Fraser and Keddy, 1997; Resetarits 586 

and Bernardo, 1998). Because the study organisms are fast-growing and small, they are 587 

amenable to frequent monitoring. Experimental systems can furthermore be manipulated to study 588 

the ability of models to capture press or pulse perturbations.  589 

 590 

Data availability is as crucial as data quality to foster the practice of prediction. Ideally, data should 591 

be long-term and real-time, such that anticipatory predictions can be made and checked with the 592 

smallest delay. This seems in reach for epidemiology; however, the majority of studies reviewed 593 

evaluated predictive proficiency by hindcasts. An alternative to collecting data for the purpose of 594 

prediction is to integrate data from governmental environmental monitoring schemes such as the 595 

long-term ecological research network (LTER, https://www.lternet.edu/) (Niu et al., 2014) or the 596 

collection of phenology data (monitoring by national meteorological agencies). Another source of 597 

regular data could be the use of volunteer-based monitoring schemes (for instance for birds or 598 
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butterflies). These citizen science projects have the advantage of often covering large geographic 599 

areas (national to continental) and are designed to run for decades. However, careful 600 

assessments are needed to ensure data quality and comparability (Isaac et al., 2014). 601 

Nevertheless, making frequent predictions (e.g. abundance trends), and checking their 602 

precision/accuracy in hindsight, would allow comparison of different model types in terms of 603 

predictive success, as well as definition of an ecology-wide baseline of predictive success. 604 

Ensuring representative predictive proficiency of models and towards 605 

a gold standard of prediction 606 

The majority of the predictive models reviewed here make hindcasts: cross-validations where a 607 

set of data is partitioned into a training set, to which the model is calibrated, and a test data set 608 

which the model aims to predict. Because of that they fall short of anticipatory predictions, for 609 

several reasons. One major issue with hindcasts is that the modelers have access to the test 610 

data. Therefore, test and training data sets are unlikely to be independent, as the training data 611 

set is unlikely to be chosen if it is not representative of the time series as a whole. In addition, 612 

investigators have unlimited attempts to predict (Franks, 2009), usually without indicating how 613 

many times it has failed. Complete failures or low success of models to predict a test data set will 614 

even go unpublished, limiting our ability to determine a representative measure of predictive 615 

success. 616 

The predominance of hindcasts may cause several biases in the predictive power of ecological 617 

models, both in terms of the general predictive ability of a field and the predictive proficiency of 618 

certain model types relative to one another. They may be misleading because a model with 619 

enough degrees of freedom is likely to perform well through ‘overfitting’, regardless of how well it 620 

represents the scenario it is predicting. In this case, the predictive ability of complex mechanistic 621 

models may be overstated, because they have greater numbers of unconstrained parameters, 622 

and are therefore often underspecified given that data in ecology are hard to come by. The 623 

predictive ability of sufficiently flexible phenomenological/statistical models may be overstated as 624 

well, because of their focus on reproducing observations instead of incorporating mechanisms 625 

(Wenger and Olden, 2012). On the other hand, the predictive ability of simple mechanistic or more 626 

constraining phenomenological models could be underestimated. Tools to deal with over-fitting 627 

such as Akaike Information Criterion and procedures to systematically simplify complex IBMs 628 
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(pattern oriented modelling) exists and can help to tackle these issues (Burnham and Anderson, 629 

2002; Grimm and Railsback, 2012). 630 

For these reasons, we should improve the way in which predictions are evaluated in ecology. This 631 

does not entail a complete rejection of hindcasting, but an attempt to mitigate the problems 632 

associated with retrospective predictions playing ‘too safe’. First, test and training data should be 633 

kept as independent as possible, potentially keeping the test data inaccessible to the researchers 634 

making the prediction (e.g. by using a database). The modelers can later submit predictions that 635 

are compared against the test data by an independent party. To keep test and training data 636 

independent, they should naturally be kept separated in time, but should also ideally be obtained 637 

from different locations and scenarios in order to properly test the model’s general applicability 638 

beyond its calibration data—also known as transferability (Wenger and Olden, 2012). This is the 639 

rationale behind the use of 'space-for-time' substitution in forest succession modeling, in which 640 

predictive models are calibrated for new forests, run for time periods of hundreds of years, and 641 

subsequently tested for their ability to predict nearby old growth forests. In contrast with 642 

hindcasting, anticipatory predictive studies automatically guarantee that modelers don’t have 643 

access to test data beforehand. The genuine anticipatory prediction of a different situation to 644 

which the model has been calibrated also guarantees independence of the test and training data, 645 

and is therefore the “gold standard” of prediction.  646 

How should we report predictions? 647 

Anticipatory predictions are rarely formulated and even less frequently checked in hindsight, even 648 

when predictions are reported to government agencies on a regular basis. This is surprising, as 649 

predictions could easily be checked, as soon as new data becomes available. Hence, we suggest 650 

to make predictions in the first place so we have something to compare with when new data 651 

become available. A good example is Glaser et al. (2014), who used hindcasts to test the 652 

predictive proficiency of their model but also provide an anticipatory prediction for the next year, 653 

for which data was not yet available. A rigorous assessment of proficiency would require us to 654 

collect the predictions (ideally for a number of steps into the future) in a database with specific 655 

information about the model and data used. Whereas databases with population dynamic data 656 

(e.g., Global Population Dynamics Database, GPDB) and stock assessments (RAM legacy 657 

database) are available, we are not aware of databases that store model predictions and thereby 658 

allow the quantification of predictive proficiency. One could perform model inter-comparisons to 659 

evaluate their proficiency or rely on ensemble forecasts to study the consistency of different model 660 
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types (e.g. statistical versus mechanistic). This may help to quantitatively disentangle whether 661 

certain ecological levels of organization, processes or organism properties are related to 662 

predictive success. 663 

A major difficulty in comparing predictive proficiency across fields was the great diversity in how 664 

predictive proficiency was reported. A diversity of measures was used across studies, including 665 

correlation coefficients between predictions and observations, different measures of error (the 666 

absolute or relative difference between predictions and observations) as well as whether 667 

observations fell within the confidence bounds of predictions. This is true even in more predictive 668 

fields such as epidemiology (e.g. Nsoesie et al., 2014), which has a good practice of reporting 669 

and communicating predictions but in which no single metric is consistently reported. Whereas 670 

there may have been good reasons to choose one measure over the other in specific studies, we 671 

would advocate either the use of a single metric for reporting predictive proficiency in ecology, or 672 

the use of several complementary metrics that capture different aspects of predictive success. 673 

For time series, several recent studies (Garland et al., 2014; Ward et al., 2014) used the mean 674 

absolute scaled error (Hyndman and Koehler, 2006) which facilitates assessment of forecast 675 

accuracy within and among time series and hence facilitate comparisons. On the other hand, 676 

Olsen et al. (2016) report different metrics of predictive success to assess the predictive ability of 677 

a large ecosystem model and conclude that only the combination of metrics captures the different 678 

aspects of predictive proficiency. Ideally, predictions would be stored in a database, such that 679 

several metrics could be calculated across a variety of predictions and observations. 680 

The practice of prediction and evidence-based policy 681 

Although most models reviewed were quantitative, predictions do not need to rely on 682 

mathematical models to be useful. Evidence-based policy requires interactions among various 683 

groups and can take evidence from various sources. Policy makers and practitioners make 684 

decisions about how to achieve a particular outcome, or to solve a particular problem; e.g. how 685 

to control the outbreak of a particular disease, or how to reverse the decline in abundance of a 686 

threatened species. Predictions are intrinsic in any decision, in that one is predicting that the 687 

course of action decided upon will have the desired outcome. 688 

 689 

In the case of controlling the 2001 foot and mouth disease outbreak in the UK, scientists quickly 690 

developed mathematical models, which were used to make forecasts about the effects of 691 

alternate vaccination and culling policies (Ferguson et al., 2001). When mathematical models are 692 
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unavailable, or cannot be developed in time, decisions can be informed by other sources of 693 

evidence, including expert opinion. Expert opinion can be defined as a prediction made by a 694 

specialist with extensive experience and expertise relevant to the problem at hand. Unfortunately, 695 

expert opinion must be treated with great care, due to the thoroughly demonstrated cognitive 696 

biases that greatly reduce its predictive value (Sutherland and Burgman, 2015; Tetlock, 2006). 697 

One solution to the frailty of expert opinion is to train experts in the practices associated with 698 

accurate forecasting.  699 

 700 

Groups and individuals making forecasts should attempt to first collate and apply relevant 701 

objective evidence to the problem at hand (the outside view). Evidence from comparable 702 

situations, and from relevant empirical studies, can be used as a baseline. For example, during 703 

the 2001 foot and mouth outbreak, comparisons with previous outbreak, particularly the large 704 

outbreak in 1967, and past interventions, were made. Only after application of the outside view, 705 

predictions are modified according to particular characteristics of the specific problem at hand 706 

(the inside view). As for quantitative models, assessment of predictive proficiency is an essential 707 

feedback to experts, especially when operating in groups that share evidence on which forecasts 708 

are based. Assembling empirical evidence (outside view) in advance of needing it for a particular 709 

policy decision has been termed “solution scanning” and explicitly involves decision makers 710 

(Sutherland et al., 2014). 711 

 712 

All of the previous points share similarities with systematic reviews in medicine and evidence-713 

based conservation, which require careful assessment by experts to compile the evidence, 714 

assess potential confounding factors, and make these available in forms of databases that are 715 

frequently updated (http://www.cebc.bangor.ac.uk/ebconservation.php). It also shows how 716 

important it is to still keep humans “in the loop” in terms of checking model predictions. Indeed, 717 

even in fields like meteorology, which showed impressive gains in predictive proficiency, model 718 

predictions are still cross-checked by experts for errors (Doswell, 2004). 719 

 720 

Making predictions relevant beyond predictive proficiency 721 

While we argued here for rigorous assessment of predictive proficiency, we acknowledge that 722 

improving predictive proficiency requires resources and may only be justified if there is a higher 723 

payback in terms of better informed policy. Analytical frameworks to assess the value of 724 

information are available from decision theory and applied in fields such as health economics 725 
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(Claxton et al., 2002) or conservation biology (Canessa et al., 2015). Such analysis requires clear 726 

specification of the uncertainty of alternative decisions under a suite of hypotheses (scenarios 727 

describing what the future may look like) to evaluate the costs of certain actions (Canessa et al., 728 

2015). Based on this information, scientists can decide whether it is worthwhile to collect further 729 

information, and if so prioritize where reduced uncertainty will yield the highest pay backs. 730 

Coupling predictive models with socio-economic models may also help to account for economic 731 

constraints and also better understand when sociological factors limit the adoption of evidence 732 

based policy (Sutherland and Freckleton, 2012). 733 

Another important aspect to consider for scientists is that counterintuitively, better predictive 734 

proficiency does not necessarily lead to better decisions (Pielke and Conant, 2003). This is 735 

because science is not directly translated into decisions, but is only part of the decision making 736 

process, together with communication and the multiple constraints (i.e. societal and economic) 737 

that need to be balanced (Pielke and Conant, 2003). Communication of the inherent uncertainty 738 

of ecological predictions to policy makers is essential, as well as considering the needs of policy 739 

makers in terms of ecological evidence (Sutherland and Freckleton, 2012). One major factor for 740 

the adoption of ecological prediction is the experience (exposure to and ability to assess the 741 

quality of predictions) that policy makers have with ecological predictions (Pielke and Conant, 742 

2003). Only predictions considered useful for decisions will be incorporated in the decision making 743 

process. These points are essential to make ecological predictions more relevant to policy makers 744 

and may be as important as improving predictive proficiency itself. 745 

Conclusions 746 

Global environmental change poses many threats to natural ecosystems and global biodiversity. 747 

Hence, there is a pressing need for anticipatory predictions, which will help to foresee, manage 748 

and adapt to the effects of global change (Mouquet et al., 2015; Petchey et al., 2015). Ecologists 749 

have come a long way towards making their science more quantitative and have developed the 750 

habit of testing theories using explanatory predictions. Now there is an urgent need to follow the 751 

example of other fields to develop a rigorous practice of prediction to inform policy makers and 752 

the public. More anticipatory predictions, as well as critical evaluation of predictive proficiency, 753 

are needed in ecology to define the baseline of predictive proficiency and we propose various 754 

ways how to foster such a practice of prediction summarized by the forecasting loop. We believe 755 

that such concerted actions by ecologists may lead to larger gains in predictive proficiency in the 756 

long run, and will lead to more accurate and precise predictions to inform policy makers and stake 757 

holders. 758 
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Table 1: Overview of the ecology-related fields that were reviewed in terms of responses, model types used for predictions, measures 1082 

of predictive success as well as strengths and challenges to achieve better predictive proficiency. Abbreviations used: RE = relative 1083 

error, AE = absolute error, R2 = coefficient of determination, ROC = receiver operating characteristic curve, AUC = area under the 1084 

ROC curve. 1085 

 1086 
field targets of prediction 

(variables to be predicted) 
models used (e.g. phenomenological, 

mechanistic) 
measures of predictive 

success (e.g. R2, 
correlation coefficient, 

RE or AE) 

strengths challenges

Fisheries abundance and landings, 
recruitment, biomass, relative 
abundance and occurrence, 
maximum sustainable yield 

Empirical dynamic modeling, 
generalized additive models, single age 
or stage structured population models, 

EBFM model 

correlation coefficient, 
R2, ROC curves, multiple 

regressions, 
observations within 

predicted boundaries 

regular data collection over large 
spatio-temporal scales 

Delay between data collection and assessments, often only 
short-term forecasts, insufficient data about species 

interactions 

Epidemiology establishment of novel 
pathogens, peak and timing of 

epidemics, effect of 
interventions such as 

vaccination, quarantining, 
culling, vector control, disease 

outbreak and invasion 
thresholds 

SIR and extensions such as TSIR, 
stochastic-, statistical-, eco-

epidemiological-models, individual- 
based model 

R2, likelihood, time 
difference in epidemics 
peak, disease outbreak 

timing 

High quality data sets covering 
vast spatio-temporal scales; new 

technologies such as mobile 
phone data and search engine 

queries can be used for real-time 
prediction 

Inclusion of social network data, complex system models, 
individual oriented disease control modeling, inclusion of 

immune system models 

Eutrophication 
and algal blooms 

phytoplankton biomass, nitrate 
levels, phosphate levels 

mechanistic (often with several simple 
statistical components), statistical 

models 

R2 and RE relatively well-understood 
physical and chemical 

components, predictions of 
physical variables is good, 

predictive ability is high when 
there are strong physical drivers 

Biological processes less well understood, difficult to get 
enough data to parameterize complex models, there's a 
widespread practice of bolting together models without 

questioning the suitability of the underlying functional forms 

Ecotoxicology Contaminant fate in 
environment, mortality, chemical 

uptake in organisms 

Mechanistic models, individual-based 
models 

Statistical comparisons 
with empirical data, both 
in the laboratory and field 

Ability to use hydrologic models 
for contaminant fate, large 

amount of laboratory data for 
contaminant uptake and effects 

of toxicants on individuals 

Huge numbers of new chemicals entering the environment 
for which few data on effects are available 

Forestry Forest succession and primary 
production 

Individual-based models, Perfect-
Plasticity Approximation, species 

distribution models 

Statistical comparisons 
with species composition 
and production, R2, AUC 

Ability to test against 'space for 
time' for forest succession and 

plantation data for wood 
production 

Increasing the tree species for which adequate data exist to 
parameterize IBMs, upscaling to global level 

Biogeochemistry Nutrient flows, plant growth and 
nutrient uptake, plant turnover 
and decomposition, primary 

production (amount and 
variability) of marine systems, 

amount of C trapped in the 
ocean 

Compartment models, structured in 
elements (C, N, P, Si, Fe) 

Statistical comparisons 
with empirical data at 
various spatial and 

temporal scales 

Models with physico-chemical 
components for which data exist; 

newly available data (satellite, 
AUV, …) 

Plant dynamics and decomposition processes for new 
systems may not be well known; some physical models 

(e.g. marine hydrology) still have high uncertainty; marine 
biogeochemical models are sensitive to herbivory, which is 

often uncertain 
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