Header

UZH-Logo

Maintenance Infos

The novel gene MIA2 acts as a tumour suppressor in hepatocellular carcinoma


Hellerbrand, C; Amann, T; Schlegel, J; Wild, P; Bataille, F; Spruss, T; Hartmann, A; Bosserhoff, A K (2008). The novel gene MIA2 acts as a tumour suppressor in hepatocellular carcinoma. Gut, 57(2):243-251.

Abstract

BACKGROUND: Melanoma inhibitory activity 2 (MIA2) is a novel gene of the MIA gene family. The selective expression of MIA2 in hepatocytes is controlled by hepatocyte nuclear factor (HNF) 1 binding sites in the MIA2 promotor. In contrast, in most hepatocellular carcinomas (HCC) MIA2 expression is down-regulated or lost. AIM: In this study we examined the regulation and functional role of MIA2 in hepatocancerogenesis. METHODS AND RESULTS: In HCC cell lines and tissues HNF-1 expression was lower than in primary human hepatocytes (PHH) and corresponding non-tumorous tissue, respectively, and correlated significantly with the down-regulation of MIA2 expression. Re-expression of HNF-1 in HCC cells reinduced MIA2 in HCC cells to similar levels as found in PHH. Further, MIA2 was re-expressed in HCC cell lines by stable transfection, and the generated cell clones revealed a strongly reduced invasive potential and proliferation rate in vitro. In line with these findings treatment of HCC cells with recombinant MIA2 inhibited proliferation and invasion. In nude mice MIA2 re-expressing HCC cells grew significantly slower and revealed a less invasive growth pattern. Immunohistochemical analysis of a tissue microarray containing HCC and corresponding non-cancerous liver tissue of 85 patients confirmed reduced MIA2 expression in HCC. Furthermore, MIA2 negative HCC tissue showed a significantly higher Ki67 labelling index and loss of MIA2 expression correlated significantly with more advanced tumour stages. CONCLUSION: This study presents MIA2 as an inhibitor of HCC growth and invasion both in vitro and in vivo, and consequently, as a tumour suppressor of HCC. Further, our findings indicate a novel mechanism, how loss of HNF-1 expression in HCC affects tumorigenicity via down-regulation of MIA2.

Abstract

BACKGROUND: Melanoma inhibitory activity 2 (MIA2) is a novel gene of the MIA gene family. The selective expression of MIA2 in hepatocytes is controlled by hepatocyte nuclear factor (HNF) 1 binding sites in the MIA2 promotor. In contrast, in most hepatocellular carcinomas (HCC) MIA2 expression is down-regulated or lost. AIM: In this study we examined the regulation and functional role of MIA2 in hepatocancerogenesis. METHODS AND RESULTS: In HCC cell lines and tissues HNF-1 expression was lower than in primary human hepatocytes (PHH) and corresponding non-tumorous tissue, respectively, and correlated significantly with the down-regulation of MIA2 expression. Re-expression of HNF-1 in HCC cells reinduced MIA2 in HCC cells to similar levels as found in PHH. Further, MIA2 was re-expressed in HCC cell lines by stable transfection, and the generated cell clones revealed a strongly reduced invasive potential and proliferation rate in vitro. In line with these findings treatment of HCC cells with recombinant MIA2 inhibited proliferation and invasion. In nude mice MIA2 re-expressing HCC cells grew significantly slower and revealed a less invasive growth pattern. Immunohistochemical analysis of a tissue microarray containing HCC and corresponding non-cancerous liver tissue of 85 patients confirmed reduced MIA2 expression in HCC. Furthermore, MIA2 negative HCC tissue showed a significantly higher Ki67 labelling index and loss of MIA2 expression correlated significantly with more advanced tumour stages. CONCLUSION: This study presents MIA2 as an inhibitor of HCC growth and invasion both in vitro and in vivo, and consequently, as a tumour suppressor of HCC. Further, our findings indicate a novel mechanism, how loss of HNF-1 expression in HCC affects tumorigenicity via down-regulation of MIA2.

Statistics

Citations

Dimensions.ai Metrics
55 citations in Web of Science®
62 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

220 downloads since deposited on 11 Feb 2009
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Gastroenterology
Language:English
Date:2008
Deposited On:11 Feb 2009 15:40
Last Modified:26 Jun 2022 07:35
Publisher:BMJ Publishing Group
ISSN:0017-5749
OA Status:Green
Publisher DOI:https://doi.org/10.1136/gut.2007.129544
PubMed ID:17881540