Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Cold thermal irrigation decreases the ipsilateral gain of the vestibulo-ocular reflex

Tamás, L T; Weber, K P; Bockisch, C J; Straumann, D; Lasker, D M; Büki, B; Tarnutzer, A A (2017). Cold thermal irrigation decreases the ipsilateral gain of the vestibulo-ocular reflex. Ear and Hearing, 38(3):e193-e199.

Abstract

OBJECTIVES: During head rotations, neuronal firing rates increase in ipsilateral and decrease in contralateral vestibular afferents. At low accelerations, this "push-pull mechanism" is linear. At high accelerations, however, the change of firing rates is nonlinear in that the ipsilateral increase of firing rate is larger than the contralateral decrease. This mechanism of stronger ipsilateral excitation than contralateral inhibition during high-acceleration head rotation, known as Ewald's second law, is implemented within the nonlinear pathways. The authors asked whether caloric stimulation could provide an acceleration signal high enough to influence the contribution of the nonlinear pathway to the rotational vestibulo-ocular reflex gain (rVOR gain) during head impulses.
DESIGN: Caloric warm (44°C) and cold (24, 27, and 30°C) water irrigations of the left ear were performed in 7 healthy human subjects with the lateral semicircular canals oriented approximately earth-vertical (head inclined 30° from supine) and earth-horizontal (head inclined 30° from upright).
RESULTS: With the lateral semicircular canal oriented earth-vertical, the strongest cold caloric stimulus (24°C) significantly decreased the rVOR gain during ipsilateral head impulses, while all other irrigations, irrespective of head position, had no significant effect on rVOR gains during head impulses to either side.
CONCLUSIONS: Strong caloric irrigation, which can only be achieved with cold water, reduces the rVOR gain during ipsilateral head impulses and thus demonstrates Ewald's second law in healthy subjects. This unilateral gain reduction suggests that cold-water caloric irritation shifts the set point of the nonlinear relation between head acceleration and the vestibular firing rate toward a less acceleration-sensitive zone.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
04 Faculty of Medicine > Neuroscience Center Zurich
04 Faculty of Medicine > Zurich Center for Integrative Human Physiology (ZIHP)
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Otorhinolaryngology
Health Sciences > Speech and Hearing
Language:English
Date:27 December 2017
Deposited On:02 Mar 2017 13:31
Last Modified:16 Mar 2025 02:38
Publisher:Lippincott Williams & Wilkins
ISSN:0196-0202
OA Status:Green
Publisher DOI:https://doi.org/10.1097/AUD.0000000000000398
PubMed ID:28045785
Download PDF  'Cold thermal irrigation decreases the ipsilateral gain of the vestibulo-ocular reflex'.
Preview
  • Content: Accepted Version

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

185 downloads since deposited on 02 Mar 2017
19 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications