Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Integrative conductance of oxygen during exercise at altitude

Calbet, José A L; Lundby, Carsten; Boushel, Robert (2016). Integrative conductance of oxygen during exercise at altitude. In: Roach, Robert C. Hypoxia : Translation in Progress. New York, NY: Springer, 395-408.

Abstract

In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.

Additional indexing

Item Type:Book Section, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Zurich Center for Integrative Human Physiology (ZIHP)
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Language:English
Date:2016
Deposited On:15 Mar 2017 11:22
Last Modified:16 Mar 2025 02:38
Publisher:Springer
Series Name:Advances in Experimental Medicine and Biology
Number:903
ISSN:0065-2598
ISBN:978-1-4899-7676-5
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/978-1-4899-7678-9_26
PubMed ID:27343110
Full text not available from this repository.

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Authors, Affiliations, Collaborations

Similar Publications